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Abstract:

We find congruences for the t-expansion coefficients of Drinfeld modular forms

for T'y(T). We determine all the linear relations among the initial ¢t-expansion coefficients of

Drinfeld modular forms for T'y(T).
Key words:

1. Introduction. By studying the action
of the Hecke operators, Loépez [11] proved the
existence of congruences for the coefficients of a
Drinfeld modular form, the discriminant function
A. Gallardo and Lépez [6] showed that there exist
congruences for the s-expansion coefficients of the
Eisenstein series of weight ¢* — 1 for any positive
integer k. By using the Residue Theorem, we [1]
found divisibility properties for the t-expansion
coefficients of Drinfeld modular forms for
GLy(F,[T]). As a consequence we obtained congru-
ence relations of t-expansion coefficients of Drinfeld
modular forms for GLy(F,[T]).

In the classical case, the study of the arithmetic
properties of modular forms with algebraic integral
coefficients is a rich and interesting branch in the
theory of modular forms. (see [12] for many results
and applications in this direction). In [3] Choie,
Kohnen and Ono showed p-divisibility properties
for Fourier coefficients of a modular form on SLy(Z)
and determined all the linear relations among the
initial Fourier coefficients. Here, the classical dis-
criminant function played an important role in the
study of congruence properties among the Fourier
coefficients of modular forms on SLy(Z). El-Guindy
[4] generalized methods in [3] by finding an analogy
of the classical discriminant function and obtained
similar results for cusp forms of level N € {2,3,
5,7,13} (These are all the primes for which I'y(N)
is a genus zero group). Precisely, he showed that
ag(p°) =0 mod p under a certain condition when
N = 2. For other cases, that is, N € {3,5,7,13}, he
found congruence properties of linear combination
of Fourier coefficients of a cusp form on I'y(N). Here
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we note that as(p°) is the p°~th coefficient of a
modular form f and p is a prime.

These results motivate the research of divisi-
bility properties for the t-expansion coefficients of
Drinfeld modular forms. In this paper when ¢ is not
2 we generalize the results in [1] to the Hecke
congruence subgroup I'o(T) of GL2(F,[T]) (see
Theorem 3.4, Corollary 3.5 and Theorem 4.1) by
producing an analogy Ar of the discriminant
function A. Specially, we find (77 — T')-divisibility
properties for the t-expansion coefficients of
Drinfeld modular forms for I'((7") (Corollary 3.5).
Moreover, since there is an automorphism of A
which maps the polynomial T to T —a and the
congruences derived in this paper are invariant
under this group action, we can obtain the same
congruences for Hecke congruence subgroup T'o(T —
a) where a € F,,.

2. Preliminaries. Let K be the rational
function field F,(T) over the finite field F, of
characteristic p and A =F,[T]. Let K, be the
completion of K at oo=(1/T) and C be the
completion of an algebraic closure of K. Let deg
be the unique valuation of K such that deg(f) is —1
times the usual degree of every polynomial f € A.
Normalize the absolute value | - | on K correspond-
ing to deg so that |T|=g¢q. There is a unique
extension of |- | to C, which will be labelled by the
same symbol.

Let Q=C - K, be Drinfeld’s upper half
plane. Then the group GLs(A) acts on £ in the
following way: if v = (¢ Z) € GLy(A) and z€ Q,
then

az+b
Ccz+d’
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Let @ be a monic element of A. Consider the
following Hecke congruence subgroup of GLy(A):

To(Q) = {( ”) € GLs(A) | c=0 mod Q}.

For each group I'¢(Q), the rigid analytic space
Ty (Q)\N is uniquely endowed with the structure of
a smooth affine algebraic curve over C. We let
To(Q)\Q denote its smooth projective compactifi-
cation. For a 1-form w on To(Q)\Q, the Residue
Theorem [10, Theorem 7.14.2] says the following

Z Res,w =0

pelo(@\Q

A cusp of Th(Q)\Q is a point of Ty(Q)\Q —
To(Q)\S2. At the level of C-valued points, we have
Ty (@\Q2 = To(Q)\(RUP!(K)).

Let L =mA be the rank one A-lattice in C
corresponding to the Carlitz module,

pr = TX + X1
Let e, be the exponential function associated to L
(see [8,p. 672]). We define

t=1t(z):= and s = ¢!,

er(7z2)
A Drinfeld modular form (respectively, a
meromorphic Drinfeld modular form) for T'y(Q) of
weight k and type m (where k > 0 is an integer and
m is a class in Z/(q — 1)) is a holomorphic (respec-
tively, meromorphic) function f:Q — C that sat-
isfies:
(i) f(y2) = (dety) "(cz+d)" f(2) for
(¢ 7)) €To(Q),
(ii) f is holomorphic (respectively, meromorphic)
at the cusps of T'y(Q).
If f is a meromorphic Drinfeld modular form
for To(Q) of weight k and type m, then the ¢
expansion of f is of the form

- Z le((q - 1)’L + m)t(q—l)ﬂ-m,.

any =

Here and in what follows, we denote the unique non-
negative integer less than g — 1 representing the
congruence m by the same symbol. Let M (T'((Q))
be the C-vector space of Drinfeld modular forms for
'y (Q) of weight k and type 0. For convenience we
call elements of M},(T'y(Q)) simply Drinfeld modular
forms for T'y(Q) of weight k.

For z € Q, welet A, = Az + A be the associated
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rank 2 A-lattice in C. Then it induces a Drinfeld
module ¢* of rank 2 determined by

o7 =TX + g(2) X+ A(2) X?

The functions g and A in z are Drinfeld modular
forms for GLo(A) of weights ¢—1 and ¢*—1,
respectively. We normalize g(z) and A(z) as
follows:

Gnew(2) = 7 I9(z) and Apew(z) = 7~rl_‘12A(z).

Hereafter we write g(z) and A(z) for gnew(z) and
Apew(2), respectively (see [8,sect. 6]).

Let A;={a€ Alaismonic}, and FE=
E(2) =) ,ca, at(az) (see [8,p. 686]). Then we have
(dA/dz)/(FA) = FE

Lemma 2.1. The first few coefficients of g
and E are given as follows:

() oz =1 (- = (T

(il) E =t 4 tla=D'+1 4.

Proof. Notice that

—T)sTat 4 .

Eft =1+ U7 + 570y 2 4
(see [8, p. 692, (10.5) Corollary])
and
9(z) = 1= [1)(s + 57U + o
(see [8, p. 694, (10.11) Corollary])
where U; = 1 — 5771 + [1]s? (see [8, p. 691]) and [1] =
T1—T (see [8,p. 677, (4.2)]). These imply the
assertion. O
Let G be any meromorphic Drinfeld modular

form of weight 2 and type 1 for To(T). Take v =
(° ’1) and let

(GL)(2) =

-3 (g

ZZ‘»

"G(v2)

— 1)i 4 i/,

(det v)"(cz+d)”

which is the ¢(z/T)-expansion of G(z) at the cusp 0.
We will call (¢ —1)i,+ 1 the order of the zero of
G at the cusp 0 if ay((¢ —1)i, +1) #0. We can
consider w := G(z)dz as a 1-form on I'o(T)\€2.

Let

m: Q= To(T)\Q

be the quotient map and e, be the cardinality of
Lo(T)./(To(T), N Z(K)) for each 7 € Q. Here I'y(T')..
is the stabilizer of 7 in I'y(7T") and Z(K) is the group
of scalar matrices. It is known [9,p. 50] that e, is
prime to p. We then have the following lemma.
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Lemma 2.2. With the same assumptions
and notations as above we have
ag (1)

™

Resyow =

Proof. Since dt¢~! = 7t?dz, we obtain Res,w =
ag(l)/?r. U

3. Congruences of coefficients of Drinfeld
modular forms for I'y(T"). Given a prime P € A
and a Drinfeld modular form f =3 ., a,t" with P-
integral coefficients, we define the filtration of f
modulo P to be the least weight k for which there
exists a Drinfeld modular form fy of weight k& with
t-expansion ), ., b,t" such that a, =b, (mod P)
forallm >0.

For a Drinfeld modular form to have filtration
lower than its weight, two a priori unrelated infinite
power series must line up when taken modulo a
prime -a seemingly unlikely occurrence. In view of
this, one might expect such events to have interest-
ing consequences. Indeed, in the classical case, work
of Deligne, Swinnerton-Dyer, and Serre suggests a
relationship between the supersingular locus and
modular forms with lower filtration than weight.
Recently, Dobi and et al. [5] presented an analogous
relationship for Drinfeld modular forms. Indeed,
each non-zero Drinfeld modular form f for GLy(A)
with coefficients in A has a unique polynomial
F(f,z) € Alx] such that f = g°h"F(f,7) where a,b
are integers and j is the Drinfeld modular invariant.
Let P be a prime and f have filtration {. Then they
showed that z°F(f,z) — Sy(P : 2)* =0 (mod P) for
some integer ¢, d depending on I. Here S,(P : z) is
the Drinfeld supersingular locus (see [5, p. 2] for the
definition).

Thus, congruences for the t-expansion coeffi-
cients of Drinfeld modular forms require a research
in some sense. The author [1] found certain divis-
ibility properties for t-expansion coefficients of
Drinfeld modular forms for GLy(Fy[T]). In this
section we generalize this result for the Hecke
congruence subgroup I'g(T).

From now on we assume that ¢ is not 2.

PI’OpOSitiOl’l 3.1. dimCMk(q—l)(FO (T)) =k+1
(k>1).

Proof. See [7,p. 93, 6.5 Table]. O

Let Ari= (g(T2) — g(2)/(T" — T) € M, 1(Ty(T)).
Then Ar has a s-expansion at the cusp oo of the
form
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Ap=s—sT+4---
because
t(Tz) =t1+--- € A[[t]]
(see [8, p. 678 and p. 682, (6.2)])
and
9(Tz) —g(z) =1 = (T" =T)s" +--+)
— (1= (T"=T)s — (T" = T)s* 1 4...).

Let h be the Poincaré series P11 of weight
g+ 1 and type 1 (see [8,p. 681] for the definition).
Let jr) = jr)(2) == h(2)/M(Tz) = 1/s+--- be the
Drinfeld modular function for I'o(T') (see [8, p. 692,
(10.4) Corollary]). Then the latter is holomorphic
on QU {0} and has a simple pole at co (see [2, the
proof of Proposition 2.1.]).

Proposition 3.2. The set {j'éT)A§ |0<i<
k} is a basis of Myg—1)(I'o(T)).

Proof. Since jE’T)Ag = sk ... for every 0 <
1 < k, these forms are linearly independent over C.
Since the j’(:T>A]} (0 <i<k) are holomorphic on
QU {o0,0} and hence contained in Mj,1)(T'o(T)),
they form a basis of Mj,_1)(To(T)). O

Since { jir)Ar, Ar} is a basis of M, 1(I'y(T)),
there are a,b € C such that g = aAr + bjr)Ar. This
means that g/Ar is holomorphic on Q U {0} and has
a simple pole at co. Hereafter we write jr for g/Ar.

Proposition 3.3. The modular from Ar has
no zero on QU {0}.

Proof. Since g has no zero at the cusp 0 and
g/Ar is holomorphic at the cusp 0, Ar has no zero
at the cusp 0.

Since A(Tz) = j(T)AT(z)q+1 +aAp(2)™™ for
some a € C and A(T'2) has no zero on 2, Ap has
no zero on 2. O

The following theorem is motivated by the
classical results of p-divisibility properties for
Fourier coefficients of modular forms on SLy(Z).
These classical results play an important role in the
p-adic theory of modular forms. Unfortunately the
author could not find a similar role for Theorem 3.4
in the function field case. This requires further
research.

Theorem 3.4 gives mysterious congruence
properties of Drinfeld modular forms.

Theorem 3.4. Let f be a Drinfeld modular
form for To(T) of weight k(q—1). Let fE have the
following t-expansion at co
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FE =3 ap((a— D+ DHH e Al
n=>0

For every integer b > 0 such that k < p® we have that
asp((q—1)p" +1) = 0 mod (T - T).

Proof. For any non-negative integer a the
function j”T’hf/AkT'Jrl is a meromorphic Drinfeld
modular form for T'y(T) of weight 2 and type 1,
and holomorphic on Q. Take v = ([1] ’01). Then the
t(z/T)-expansion of h(z) at the cusp 0 is of the form

h(z):—t<;)q+---.

(ot /AR L) (2) = at (T> L

for some a € C

Hence

which means it has a zero of order at least ¢ at 0.
By the Residue Theorem on To(T)\Q and
Lemma 2.2, the coefficient of ¢ in

Jrhf
Agjl

vanishes.

Let a>0, b>0 be integers such that a+
k41 =p’. The facts that g =1 mod (T%—T) (see
[8,p. 684, claim (i7) of (6.9) and (6.12)]) and F =
—h mod (T9—T) (see [8,p. 687, (8.5) and (9.1)
Theorem]) show that the coefficient of ¢ in

jshi _ ~JE
AIIC:FI AI;
= —(s’pb 4502 4 -)fE mod (T*—T)
is zero mod (79 —T), where --- means “higher
terms in t”. This implies the assertion. O
Corollary 3.5. Let f € My,_1)(I'o(T)) have
the following t-expansion at oo

F= asl(g— Dt

n=0
If ¢g>p+1 and p > k then we have that as((q—
1)p) =0 mod (T —T).

Proof. Take b =1 in Theorem 3.4. Noticing
that the condition ¢>p+1 implies asp((g—
1)p+1) = as((¢ — 1)p) we obtain the assertion. O

4. Linear relations among Drinfeld mod-
ular form coefficients. In this section, we give
all the linear relations among the initial t-expansion

" € [l
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coefficients of Drinfeld modular forms in
Mi(q—1)(To(T)).

For any integer N > 0, we let
L1y nTo(T)) ==
k+N+1
{(CQ, Clyeevs Chyrry) € CFTNT2 Z car(lg—1)i)=0
i=0

vf= iaf((q — D)t @ " e My, >(F0(T))}

be the space of linear relations satisfied by the first
k+ N + 2 t-expansion coefficients of all the forms

f € Myq1y(To(T)).

To state our result, for each Drinfeld modular
form u € My(—1)(I'o(T)) define the elements b(k,
N,u;i) of C by

k+N+1
_ q 12+1
Ak+N+1 = E b(k, N, u;i)t

+ ) ek, Nyu; iyt

i=1

In this notation, we have the following
Theorem 4.1. The map

Mpy(g—1)(To(T)) = Lig-1)n(To(T)) defined by

b (u)
= (b(k7N7uaO)7b(k7N7u7 1)7 "

PrN -

bk, N,u; k+ N + 1))
provides a linear isomorphism from My,—1)(Io(T))
onto Lk(q—l),N(FO(T))-

Proof. Let

u € Myg-1)

f= iaf((q -
=0

The meromorphic Drinfeld modular form hfu/
AFNHL s holomorphic on © and has a zero of order
at least q at 0. By the Residue Theorem on T'o(T)\Q
and Lemma 2.2, the coefficient ZfiNH b(k, N,
u;i)ayp((q — 1)) of t in

hfu

and

1 Z)t(qil)i € Mk’(q—l)-

is zero. Therefore the map ¢ is well-defined.
Clearly, ¢ is linear. Suppose that ¢ n(u) = 0.

This assumption implies that % is double
3
hfu

cuspidal. Since the genus of T'o(T)\€2 is zero, N

is the zero function which says that u is the zero
function. Thus ¢y, x is injective.

Since the k41 functionals {as(0),as(1),- -,
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ay(k)} form a basis for the dual space (Mj,_1))" (see
the proof of Proposition 3.2), we conclude that
dimCLk(q—l),N(FO(T)) =N+1= dimMN(q,l) SO ¢ N
is an isomorphism. ([
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