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Abstract: Let f : X ! Y be a covering of closed oriented surfaces. Then f induces a

homomorphism f� : H1ðX;ZÞ ! H1ðY ;ZÞ of the first homology groups. We consider the converse

and characterize—in terms of matrices—the abstractly given homomorphisms of the first

homology groups which can be induced by coverings of prime degree. We also classify the induced

homomorphisms in these cases.
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1. Introduction. Throughout this paper,

all of the surfaces will be closed, oriented and of

gerera � 1. Let X and Y be surfaces of genera g and

�, respectively. Let f : X ! Y be a covering,

possibly ramified. Then f induces a homomorphism

f� : H1ðX;ZÞ ! H1ðY ;ZÞ of the first homology

groups. It is natural to ask for a characterization

of the abstract homomorphisms of the first homol-

ogy groups induced by coverings. This question was

originally raised by Hopf [3] and Martens [4] named

it a problem of Hopf. Let En be the n� n identity

matrix. Let Jg ¼
0 Eg

�Eg 0

� �
.

Any basis for H1ðX;ZÞ (say f�1; . . . ; �2gg),
with intersection matrix (that is a matrix whose

(k; j)-entry is given by the intersection number

�k � �j) Jg will be called a canonical homology basis.

Hopf gave the following necessary condition.

Lemma 1 (Condition of Hopf). Let M be a

2� � 2g matrix of integers representing the induced

homology homomorphism, with respect to canonical

homology bases, of a covering f : X ! Y . Then M

satisfies

MJg
tM ¼ dJ�;

where d is the degree of the covering.

Poincaré discovered the following so called

normal form lemma in his work on the reduction of

abelian integrals (cf. [6,7] and volume III of his

Collected Works) with a rather sketchy proof. A

complete proof was given by Martens [5].

Lemma 2 (Normal form lemma). Let 1 �

� < g, and let M be a 2� � 2g matrix with integer

entries such that MJg
tM is non-singular. Then

M ¼ SNT where S is a 2� � 2� non-singular matrix

of integers, T is a 2g� 2g symplectic unimodular

matrix, and N is a 2� � 2g matrix of integers in

block form

N ¼
E� 0 0 0

0 A � 0

� �

where � is a diagonal matrix of integers each

diagonal entry dj;j is a multiple of the subsequent

diagonal entry djþ1;jþ1, and A is a � � ðg� �Þ matrix

where ajj ¼ 1 for all j � r for some r with

0 � r � min:ð�; g� �Þ, and the remaining entries

are zero.

We will call N the Poincaré normal form for

M. Martens [4] studied the problem of Hopf and he

pointed out that the following necessary condition

holds for coverings of prime degrees.

Lemma 3. If d is prime and M is a 2� � 2g

matrix with integer entries satisfying the equation

MJg
tM ¼ dJ�, then

M ¼ T1

E� 0 0 0

0 A dE� 0

� �
T2;

where the Tj are symplectic unimodular, and the A

of the middle factor is the same as in Lemma 2.

Remark. By Lemma 3, for a covering of

prime degree, the Poincaré normal form is uniquely

determined by the covering since the greatest

common divisor of 2� � 2� subdeterminants of M

is preserved under multiplication on the right or the

left by a unimodular matrix as Martens pointed out

[5, p.121]. We also note that the lemma shows that

if we choose canonical homology bases properly
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then the representation with respect to these bases

is a normal form since Tj are symplectic unimodu-

lar.

From Lemma 3, as Martens pointed out, we see

that for a matrix satisfying the Hopf condition of

prime degree there are at most � possibilities for A.

He also constructed examples of coverings repre-

sented by normal forms for the case where A has �

non-zero columns and for the case where A has only

� � 1 non-zero columns (cf. [4]). Martens ended his

paper by describing that his observation should

suggest that something may be gained from a closer

study of the Poincaré normal form.

Here, we use both algebraic and complex

analytic methods to show that only two normal

forms can represent coverings when the degree is a

prime number.

Theorem 1. Let X and Y be surfaces of

genera g and � ðg > �Þ, respectively. Let f : X ! Y

be a covering of prime degree d.

If � > 1, then there are only two possible normal

forms for the covering f, namely, the entries aij of A

in a normal form

E� 0 0 0

0 A dE� 0

� �

satisfy

(I) ajj ¼ 1 for all 0 � j � min:ð�; g� �Þ and the

remaining entries are zero, or

(II) ajj ¼ 1 for all 0 � j � min:ð�; g� �Þ � 1 and

the remaining entries are zero.

Moreover, case (II) occurs if and only if the covering

is normal and unramified.

If � ¼ 1, then there are only one possible normal

form, namely, the entries a1j of A in a normal form

satisfy

(I) a11 ¼ 1 and the remaining entries are zero.

By Theorem 1, we see that, except the cases

where Martens has given examples, a normal form

cannot be a representation of a covering.

2. Preliminaries. It is well-known that if

f : X ! Y is a surface covering and Y has a

conformal structure �2, then there exists a unique

conformal structure �1 on X which makes f a

holomorphic map of ðX;�1Þ into ðY ;�2Þ (cf. [2,8]).
Thus, in the following, we think of X and Y as

compact Riemann surfaces of genera g and �,

respectively, and view f as a holomorphic map.

We denote by H1ðX;RÞ the first de Rham

cohomology group of X. For a canonical homology

basis f�1; . . . ; �2gg for H1ðX;ZÞ, there is a unique

dual basis f�1; . . . ; �2gg for H1ðX;RÞ, namely

h�k; �ji ¼
R
�j
�k ¼ �jk ðj; k ¼ 1; . . . ; 2gÞ. Let

f�0
1; . . . ; �

0
2�g be a canonical homology basis for

H1ðY ;ZÞ and let f�0
1; . . . ; �

0
2�g be its dual basis for

H1ðY ;RÞ.
Let f : X ! Y be a holomorphic map. Let

f�ð�jÞ ¼
P2�

k¼1 mkj�
0
k and put M ¼ ðmkjÞ 2 Mð2�;

2g;ZÞ. (We denote by Mðm;n;KÞ the set of m� n

matrices with K-coefficients.) We will call M the

matrix representation of f� or f (or simply the

representation of f) with respect to the canonical

homology bases. There is another interpretation of

M. Denote by f��0
k the pull back of �0

k by f .

Considering the relation hf��0
k; �ji ¼ h�0

k; f�ð�jÞi,
we may write f��0

k ¼
P2g

j¼1 mkj�j. Thus the induced

map f� : H1ðY ;RÞ ! H1ðX;RÞ is represented by

the transpose tM. We denote by ek the 2g-tuple
column vector whose k-th entry is 1 and others are

0, as usual.

Proposition 1. Let f : X ! Y be a covering

of degree d. Suppose that there exist canonical

homology bases �1; . . . ; �2g and �0
1; . . . ; �

0
2� on X and

Y , respectively, so that the matrix representation M

of f with respect to these bases is of the form

M ¼

� . . . � � � . . . �

..

. . .
. ..

. ..
. ..

. . .
. ..

.

0 . . . 0 d 0 . . . 0

0
BB@

1
CCA;

namely, the last row of M is d tek for some

k 2 f1; 2; . . . ; 2gg. Then the covering is normal and

unramified. Furthermore, the group of covering

transformations is cyclic of order d.

Proof. Regarding tM as the representation of

f� the induced homomorphism on the de Rham

cohomology groups, we have f� �0
2�

d ¼ �k. Let c
0 � Y

be a closed curve meeting no branch point of f and

homologous to �0
2�. Denote by p00 the base point of

c0. Let p0 2 f�1ðp00Þ and lift the curve c0 via f to a

curve c0 with initial point p0. Inductively, we put cj
the lift of c0 with initial point pj and put pjþ1 the end

point of cj for j ¼ 0; 1; 2; . . . ; d� 2. We see the

points p0; p1; . . . ; pd�1 are distinct from one another.

Indeed, if pi ¼ pj ði 6¼ jÞ, then c :¼ c0 þ c1 þ . . .þ
ci�1 � cj�1 � cj�2 � . . .� c0 is a closed curve and soR
c �k 2 Z. On the other hand,Z

cm

�k ¼
Z
c0

�0
2�

d
¼

1

d
ðm ¼ 0; 1; . . . ; d� 2Þ;
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and we have
R
c �k ¼ i�j

d
, a contradiction. Thus,

fp0; p1; . . . ; pd�1g ¼ f�1ðp00Þ. Let q0 2 Y be an un-

branched point. We draw a path l0 connecting q0 to
p00 avoiding branch points. Then, l0 þ c0 � l0 is a

closed curve meeting no branch point of f and

homologous to �0
2�. By the same method as above,

we obtain fq0; q1; . . . ; qd�1g ¼ f�1ðq0Þ.
Now f : X ! Y is unramified, for if there were

a branch point, say p0 2 Y , then we could deform c0

(defined above) to get a closed curve � 0 passing

through p0 via a homotopy having no branch point

of f other than p0. Then there exists a lift, say � , of

� 0 starting from p0 ending at pj which is different

from p1 the end point of c0. Then � � cj�1 � cj�2 �
. . .� c0 is a closed curve so that the same consid-

erations as above lead us to a contradiction.

Define a map T by T ðqjÞ ¼ qjþ1 for j ¼
0; 1; 2; . . . ; d� 2 and T ðqd�1Þ ¼ q0. So T ðqjÞ is the

end point of the lift of l0 þ c0 � l0 starting from qj.

Although there is ambiguity in the numbering

process of f�1ðq0Þ, the map T is well-defined (in-

dependent of the choice of the path l0). We see this

as follows: Let l0i ði ¼ 1; 2Þ be two paths connecting

q0 to p00. Then, l
0
i þ c0 � l0i ði ¼ 1; 2Þ are closed curves

homologous to �0
2�. Let q0 2 f�1ðq0Þ and lift the

curve l0i þ c0 � l0i via f to a curve li ði ¼ 1; 2Þ with

initial point q0. Denote by qi;1 the end point of li
ði ¼ 1; 2Þ and suppose that q1;1 6¼ q2;1. Then as above

we may think of q2;1 as the end point of ml1 the lift

of mðl01 þ c0 � l01Þ starting from q0, for some

m 2 f2; 3; . . . ; d� 1g. Thusml1 � l2 is a closed curve

and this implies
R
ml1�l2

�k 2 Z. On the other hand,

seeing Z
li

�k ¼
Z
l0
i
þc0�l0

i

�0
2�

d
¼

1

d
ði ¼ 1; 2Þ;

we have
R
ml1�l2

�k ¼ m�1
d
, a contradiction. It is easy

to see that T is conformal and Y ¼ X= < T >. �

The following lemma (cf. [1]) is a key tool in the

proof of Theorem 1.

Lemma 4 (Accola). Let T be an automor-

phism of a closed Riemann surface of genus greater

than one. Suppose that there exist four independent

cycles �1; �2; �3; �4 so that �1 � �3 ¼ 1, �2 � �4 ¼ 1,

otherwise �i � �j ¼ 0 and that T ð�iÞ ¼ �i for i ¼
1; 2; 3; 4. Then T is the identity.

3. Proof of Theorem 1. First, recall that a

normal form for a covering of prime degree is of the

form
E� 0 0 0
0 A dE� 0

� �
where A is a � � ðg� �Þ

matrix whose entries satisfy ajj ¼ 1 for all j � r for

some r with 0 � r � min:ð�; g� �Þ, and the remain-

ing entries are zero. Suppose � > 1. We show that

there are only two possible normal forms, case (I)

and case (II). Suppose that the normal form for a

covering f of prime degree d is neither of (I) nor of

(II). Then, we see the ð2� � 1Þ-th row of the normal

form is d tegþ��1, and the 2�-th row of the normal

form is d tegþ�. We choose canonical homology bases

�1; . . . ; �2g and �0
1; . . . ; �

0
2� on X and Y , respectively,

so that the matrix representation with respect to

these bases is such a normal form. By Proposition 1,

the covering is normal, unramified and Y ¼ X=

< T > for some T 2 AutðXÞ. From the form of the

last two rows of the matrix representation and

viewing the matrix as the representation of the

induced homomorphism on the spaces of differ-

entials again, we have f�
�0
2��1

d ¼ �gþ��1 and f� �0
2�

d ¼
�gþ�. Further, we have f��0

��1 ¼ ���1 and f��0
� ¼

��. By f ¼ f � T , f� ¼ T � � f� holds. This implies

that T ��gþ��1 ¼ �gþ��1, T ��gþ� ¼ �gþ�, T ����1 ¼
���1, and T ��� ¼ ��. Denote by L the matrix

representation of T with respect to the canonical

homology basis �1; . . . ; �2g. Then the j-th row of L is
tej for j ¼ � � 1, �, gþ � � 1, gþ �. Since L is

symplectic, writing L ¼ A B
C D

� �
in g� g blocks,

we have L�1 ¼
tD �tB

�tC tA

� �
. Hence the j-th

column of L�1 is ej for j ¼ � � 1, �, gþ � � 1,

gþ �. By Lemma 4, T�1 and hence T is the identity.

Thus Y ¼ X= < T >¼ X. But this case is impos-

sible since we have assumed g > �. Thus an ar-

bitrary normal form must be of type (I) or type (II).

Next, we will show that case (II) occurs if and

only if the covering is normal and unramified. By

Proposition 1, the covering is normal and unrami-

fied in case (II).

Conversely, suppose that the covering f is

normal and unramified. We show that if we choose

canonical homology bases on X and Y properly, the

matrix representation of f with respect to these

bases is of the form

M ¼

� . . . � � � . . . �

..

. . .
. ..

. ..
. ..

. . .
. ..

.

0 . . . 0 d 0 . . . 0

0
BB@

1
CCA;

where the ð2�; gþ �Þ-entry is d and the ð2�; jÞ-entry
is 0 for j 6¼ gþ �. Let �0

2� be a simple closed curve on
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Y which is not homologus to 0 and satisfies that

f�1ð�0
2�Þ is a simple closed curve which covers �0

2� d

times. (The existence of such a curve �0
2� can be

shown as follows: If such a curve does not exist, we

can choose a canonical homology basis �0
1; . . . ; �

0
2�

on Y such that each cycle in the basis is a simple

closed curve and such that f�1ð�0
kÞ consists of d

distinct simple closed curves for each k ¼ 1; . . . ; 2�.
But this contradicts the Riemann-Hurwitz relation

2ðg� 1Þ ¼ 2dð� � 1Þ.) We put �gþ� ¼ f�1ð�0
2�Þ.

Then there exists a cycle �� 6¼ 0 which is a simple

closed curve and satisfies �� � �gþ� ¼ 1. Put �0
� ¼

fð��Þ and denote by T the covering transformation.

Then ��, T ð��Þ; . . . ; T d�1ð��Þ are d distinct simple

closed curves which divide X into d copies of

Y � �0
�. Choosing cycles �0

1; . . . ; �
0
��1 and �0

�þ1; . . . ;

�0
2��1 on Y � �0

� properly and combining these with

�0
� and �0

2�, we get a canonical homology basis

�0
1; . . . ; �

0
2� on Y . Obviously, f�1ð�0

kÞ consists of d

distinct simple closed curves for k ¼ 1; . . . ; � � 1;
� þ 1; . . . ; 2� � 1. Ordering these cycles on X prop-

erly and combining these with �� and �gþ�, we get a

canonical homology basis �1; . . . ; �2g on X such that

the matrix representation of f with respect to

�1; . . . ; �2g and �0
1; . . . ; �

0
2� is of the form M above.

Recalling the remark following Lemma 3, we see

that the normal form is not of type (I). Conse-

quently, it must be of type (II). This completes the

proof for � > 1. Suppose next � ¼ 1. In this case, A

in a normal form is a ðg� 1Þ-tuple row vector.

Suppose that the first entry a11 of A is 0. Then the

covering is normal and unramified by Proposition 1.

If the covering is unramified, genus of the source

surface must be 1 by the Riemann-Hurwitz relation

and it contradicts the assumption g > �. Conse-

quently, a11 must be 1. �
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