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Abstract: Under some conditions on a Hilbert space H of analytic functions on the open

unit disc we will show that for every nontrivial invariant subspace M of H, there exists a unique

nonconstant inner function ’ such that M ¼ ’H. This extends the Beurling’s Theorem.
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1. Introduction. Consider a Hilbert space

H of functions analytic on a plane domain �, such
that H contains the constant functions and for each

� 2 � the linear functional e� of evaluation at � is

bounded on H. The continuity of point evaluations

along with the Riesz representation theorem imply

that for each � 2 � there is a unique function K� 2
H such that fð�Þ ¼ < f;K� >, f 2 H. The function

K� is the reproducing kernel for the point �. For a

good source on this topic see [1,2].

A complex valued function ’ on � for which

’f 2 H for every f 2 H is called a multiplier of H

and the collection of all multipliers is denoted by

MðHÞ. Each multiplier ’ of H determines a multi-

plication operator M’ on H by M’f ¼ ’f , f 2 H.

Clearly MðHÞ � H1ð�Þ, i.e., each multiplier is a

bounded analytic function on �. In fact k’k� �
kM’k. A good source on this topic is [6].

Thirty seven years after the appearance of [6] it

is reasonable to expect some words explaining the

motivation of such a study and of any developments

in the area. The description of invariant subspaces

in abstract spaces has in fact appeared under some

additional hypotheses and one of the first results

seems to be [5].

In his paper Shapiro [5] uses a construction and

the idea of which is employed in the main theorem

of this paper. For a good source of invariant

subspaces see [3,4]. We studied some properties of

the multiplication operators on Hilbert spaces of

analytic functions in [7,8] and now we want to

investigate the invariant subspaces of the multi-

plication operator Mz on such Hilbert spaces.

2. Main results. Through this paper U

denotes the open unit disc. We consistently use

letters z; w; � to denote points of U , and t to denote

points of @U. We denote by H a Hilbert space that

is contained in the Hardy space H2. The inner

products of f and g on H and H2 are denoted by

< f; g > and < f; g >H2 respectively. We assume

further that H satisfies the following axioms:

A1. For every four functions f1; f2; g1; g2 2 H

which satisfy < f1; g1 > ¼ < f2; g2 >, then we have

< f1; g1 >H2 ¼ < f2; g2 >H2 .

A2. Inner functions preserves inner products

on H, i.e., if ’ is an inner function, then

< ’f; ’g > ¼ < f; g > for all f; g 2 H.

Note that by axiom A1, if kfkH ¼ 0 then

kfkH2 ¼ 0 and this says that H is contained in H2

continuously.

Example 1. Let b be an inner function and

H ¼ bH2. Then H satisfies the axioms A1 and A2.

Example 2. Let 0 < k 6¼ 1 and b0 be a non-

constant function in H1. Put H ¼ b0H
2 and define

the inner product on H by

< f; g >H ¼ k < f; g >H2

for all f and g in H. Then H 6¼ H2 and it satisfies

the axioms A1 and A2.

In the following m denotes the Lebesgue

measure on the unit circle @U .

Theorem 3. Let H be a Hilbert space of

analytic functions satisfying the the above condi-

tions. Let M be a nontrivial subspace of H that is

invariant under the multiplication operator Mz. If

MðHÞ ¼ H1, then there exists a unique nonconst-

ant inner function ’ such that M ¼ ’H.

Proof. First we note that since H is continu-

ously contained in H2, every function of H has
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nontangential limit a.e.½m� on @U. Also every point

of U is a bounded point evaluation on H, since the

functional of point evaluations are continuous on

H2. For � 2 U we denote the reproducing kernels of

M and H by k� and K� respectively. Define

’�ðzÞ ¼
k�ðzÞ
K�ðzÞ

; z 2 U:

Since the sets of � for which K�ðzÞ � 0 and

k�ðzÞ � 0 are at most countable, ’�ðzÞ is analytic

in U except for a countable set of �. So there exists

�0 2 U such that ’�0
is analytic and also nonzero

(because M is nontrivial). Let

fðzÞ ¼ k�0ðwÞK�0ðzÞ; F ðzÞ ¼ KwðzÞ;
gðzÞ ¼ K�0

ðwÞk�0ðzÞ; GðzÞ ¼ kwðzÞ;
where z; w 2 U. Now we have

< znf; F > ¼ < zng;G > ¼ wnk�0
ðwÞK�0ðwÞ

for all nonnegative integers n. Thus by axiom A1 we

get: Z
@U

tnðf �FF � g �GGÞðtÞdmðtÞ

¼ < znf; F >H2 �< zng;G >H2 ¼ 0:

Also since Kwð�0Þ ¼ K�0ðwÞ, we have

< znF; f > ¼ < znG; g > ¼ �0
nkwð�0ÞKwð�0Þ

for all nonnegative integers n. Again by using the

Axiom 1 and taking a conjugate we getZ
@U

�ttnðf �FF � g �GGÞðtÞdmðtÞ ¼ 0

for all n � 0. Put

dv ¼ ðf �FF � g �GGÞdm:

Then we get Z
@U

pðt; �tt ÞdvðtÞ ¼ 0

for all polynomials pðt; �tt Þ and soZ
@U

hdv ¼ 0

for every continuous function h on the unit circle

@U . This implies that f �FF � g �GG ¼ 0 a.e.½m� and so

’�0
ðwÞ ¼ ’�0

ðtÞ’wðtÞ a.e.½m�:ð1Þ

Note that j < f;K� > j � kfkkK�k for all f 2
H. If we set f ¼ k�, then k�ð�Þ � K�ð�Þ. Putting

w ¼ �0 in (1) we get

j’�0
ðtÞj � 1 a.e.½m�:ð2Þ

Note that the set of measure zero in (2)

depends on �0. To find a fixed set of measure zero

let D be a countable dense subset of U such that for

all � in D, k� 6� 0 and K� 6� 0. Then (2) holds for all

� in D and for all t 2 @U except on a fixed set of

Lebesgue measure zero. Thus, given any fixed

� 2 D, for all t in a set whose complement is of

measure zero the relations j’�ðtÞj � 1 as well as

j’wðtÞj � 1; w 2 D;ð3Þ
’�ðwÞ ¼ ’�ðtÞ’wðtÞ; w 2 D;ð4Þ

are valid. Choosing such a t-value we then see from

(3) and (4) that

j’�ðwÞj � 1; w 2 D;ð5Þ

and since D is dense in U, by (5) we get j’�ðzÞj � 1
for all z in U. On the other hand ’�ðzÞ is analytic in
U and so indeed ’� 2 H1.

Now exactly by the same method used in

[5, Theorem 1, p. 451] there exists an analytic

function ’ðzÞ satisfying
’�ðwÞ ¼ ’ð�Þ’ðwÞ; �; w 2 U;ð6Þ

’�ð�Þ ¼ j’ð�Þj2; � 2 U;ð7Þ
’�ð�Þ ¼ j’�ðtÞj2 a.e.½m�; � 2 Uð8Þ

and also

j’ðtÞj ¼ 1 a.e.½m�:

So ’ is indeed an inner function (i.e., ’ 2 H1 and

j’ðtÞj ¼ 1 a.e.½m�). Now from (6) we obtain

’ð�Þ’ðzÞ ¼ ’�ðzÞ ¼
k�ðzÞ
K�ðzÞ

which implies that

k�ðzÞ ¼ ’ð�Þ’ðzÞK�ðzÞ

that is a function of z in the space M \ ’H. Note

that ’H � H since ’ 2 H1 and MðHÞ ¼ H1.

Moreover, for every g ¼ ’f in ’H, by axiom A2,

we have

< g; k� > ¼ < ’f; ’ð�Þ’K� >

¼ ’ð�Þ < ’f; ’K� >

¼ ’ð�Þ < f;K� >

¼ ’ð�Þfð�Þ ¼ gð�Þ:
Hence k�ðzÞ is a reproducing kernel for ’H. Since a

subspace is determined by its reproducing kernels,

168 B. YOUSEFI and E. HESAMEDDINI [Vol. 84(A),



we get M ¼ ’H. The uniqueness of ’ðzÞ is imme-

diate from the relation (7), which shows that j’ðzÞj
is uniquely determined for all z 2 U. Also note that

if ’ is constant, by (7), ’�ð�Þ is constant and by (8),

j’�ðtÞj and hence ’�ðzÞ is constant. But ’�ðzÞ ¼
k�ðzÞ
K�ðzÞ and so M can not be nontrivial that is a

contradiction. This completes the proof. �

Corollary 4. Let M and H satisfy all con-

ditions of Theorem 3 except the conditions MðHÞ ¼
H1 and axiom A2. Then there exists a unique inner

function ’ such that M � closureð’HÞ where the

closure is in the Hardy space H2.

Proof. By the proof of Theorem 3, there exists

a unique nonconstant inner function ’ such that the

relation

k�ðzÞ ¼ ’ð�Þ’ðzÞK�ðzÞ; � 2 U; z 2 U

holds. Note that

k�ðzÞ 2 M; ’ð�Þ’ðzÞK�ðzÞ 2 ’H

where ’ 2 H1 ¼ MðH2Þ and it may be ’ =2 MðHÞ.
Let N be the closure of the closed linear span of

fk� : � 2 Ug in the Hardy space H2. Then M �
N � closureð’HÞ where the closure is in the Hardy

space. This completes the proof. �

Corollary 5. Under the conditions of

Corollary 4, if moreover polynomials are in H, then

M � closureð’H2Þ where ’ satisfies in Corollary 4

and the closure is in the Hardy space.

Proof. Since polynomials are in H and they are

dense in H2, clearly we have closureð’HÞ ¼ ’H2

where the closure is in the Hardy space and so the

proof is complete. �

Corollary 6 (Beurling’s Theorem). If S is

the unilateral shift and M is a non-zero invariant

subspace of S, then there is a function ’ in H1 such

that j’j ¼ 1 and M ¼ ’H2.

Proof. It is an immediate consequence of

Theorem 3. �

Question 7. Is there an example of a Hilbert

space H that satisfies the axioms A1 and A2 that is

different from the examples 1 and 2 ?
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