On the maximal signless Laplacian spectral radius of graphs with given matching number

By Guihai Yu
School of Mathematics, Shandong Institute of Business and Technology, 191 Binhaizhong Road, Yantai, Shandong, 264005, P.R. China

(Communicated by Shigefumi MORI, M.J.A., Oct. 14, 2008)

Abstract

Let $\mathcal{G}_{n, \beta}$ be the set of simple graphs of order n with given matching number β. In this paper, we investigate the maximal signless Laplacian spectral radius in $\mathcal{G}_{n, \beta}$ and characterize the extremal graphs with maximal signless Laplacian spectral radius.

Key words: Signless Laplacian; matching number; spectral radius.

1. Introduction. Let $G=G(V, E)$ be a simple graph which has no loops or multiple edges, and $V=\left(v_{1}, v_{2}, \cdots, v_{n}\right)$ be the set of vertices. The matrix $A(G)=\left(a_{i j}\right)_{n \times n}$ is called the adjacency matrix of G, where $a_{i j}=1$ if v_{i} and v_{j} are adjacent and $a_{i j}=0$ otherwise. The polynomial $\operatorname{det}(x I-$ $A(G))$ is called the characteristic polynomial of G, denoted by $P_{G}(x)$. The matrix $L(G)=D(G)-$ $A(G)$ is the Laplacian matrix of G, where $D(G)=$ $\operatorname{diag}\left(d_{1}, d_{2}, \cdots, d_{n}\right)$ is the diagonal matrix and d_{i} is the degree of vertex v_{i}. The matrix $Q(G)=D(G)+$ $A(G)$ is called signless Laplacian matrix of G in [1], or Q-matrix. For convenience, we call it signless Laplacian. The eigenvalues of $Q(G)$ are denoted by $\mu_{1}, \mu_{2}, \cdots, \mu_{n}$. Since $Q(G)$ is a real symmetric matrix, we can order them $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n}$. The largest eigenvalue of $A(G), Q(G)$ is called the adjacent spectral radius, the signless Lapalcian spectral radius (Q-spectral radius) of G, denoted by $\rho(G), \mu(G)$ respectively.

Let $X=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ be an eigenvector of the signless Laplacian $Q(G)$ corresponding to the eigenvalue $\mu_{s}, 1 \leq s \leq n$, then

$$
\begin{equation*}
\mu_{s} x_{i}=d_{i} x_{i}+\sum_{j \sim i} x_{j} \tag{1}
\end{equation*}
$$

where d_{i} is the degree of vertex $v_{i}, 1 \leq i \leq n$.
Two distinct edges in a graph G are independent if they are not incident with a common vertex in G. A set of pairwise independent edges in G is called a matching in G. The matching number $\beta(G)$ (or just

[^0]β, for short) of G is the cardinality of a maximum matching of G. It is well known that $\beta(G) \leq \frac{n}{2}$ with equality if and only if G has a perfect matching. Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs. The union $G_{1} \bigcup G_{2}$ is defined to be $G_{1} \bigcup G_{2}=\left(V_{1} \bigcup V_{2}, E_{1} \bigcup E_{2}\right)$. The join $G_{1} \bigvee G_{2}$ of G_{1} and G_{2} is obtained from $G_{1} \bigcup G_{2}$ by joining edges from each vertex of G_{1} to each vertex of G_{2}. The components of a graph G are its maximal connected subgraphs. Components of odd (even) order are called the odd (even) components. For other notations in graph theory, we follow [2].

Recently the study of the signless Laplacian attracts some research attention. In [3], Fan et al. studied the signless Laplacian spectral radius of bicyclic graph with fixed order. In [4], the authors used the smallest eigenvalue of $Q(G)$ to characterize some graphs. Cvetković et al. gave a survey about the signless Laplacian in [5]. Some other use of the signless Laplacian can be found in [6-8].

Let $\mathcal{G}_{n, \beta}$ be the set of graphs of order n with given matching number β. In this paper we shall investigate the maximal signless Laplacian spectral radius and characterize the graphs with maximal signless Laplacian spectral radius in $\mathcal{G}_{n, \beta}$.
2. Lemmas and results. In order to get our main results, we need some technical lemmas.

Lemma 2.1 [5]. Let G be a simple connected graph, then the largest signless Laplacian spectral radius $\mu(G)$ satisfy

$$
\min \left\{d_{i}+d_{j}\right\} \leq \mu(G) \leq \max \left\{d_{i}+d_{j}\right\}
$$

where d_{i} is the degree of $v_{i}(i=1,2, \cdots, n)$. For a connected graph G, equality holds in either of these
inequalities if and only if G is regular or semiregular bipartite.

Lemma 2.2 [9]. Suppose G is a graph on n vertices with matching β. Then there exists a set S on s vertices in G such that $G-S$ has $q=n+s-$ 2β odd components.

Lemma 2.3. If G is a graph with maximal signless Laplacian spectral radius in $\mathcal{G}_{n, \beta}$. Then there exist positive odd numbers $n_{1}, n_{2}, \cdots, n_{q}$ such that

$$
G=K_{s} \bigvee\left(\bigcup_{i=1}^{q} K_{n_{i}}\right)
$$

with $s=q+2 \beta-n$ and $\sum_{i=1}^{q} n_{i}=n-s$.
Proof. By Lemma 2.2, there exists a subset S on s vertices in G such that $G-S$ has $q=n+$ $s-2 \beta$ odd components. Let $G_{1}, G_{2}, \cdots, G_{q}$ be the odd components in $G-S$ with $\left|V\left(G_{i}\right)\right|=n_{i} \geq 1$ for $i=1,2, \cdots, q$.

We claim that $G-S$ contain no even components, since G has maximal signless Laplacian spectral radius in $G_{n, \beta}$. In fact, if it does not hold, let C be the union of these even components. Then we add some edges to make $G\left[G_{q} \cup C\right]$ to be a complete graph. In this way, we get a new graph \widetilde{G} and $\mu(G)<\mu(\widetilde{G})$. Moreover, \widetilde{G} is a graph on n vertices with the matching number β. It is a contradiction.

Since $Q(G)$ is a real irreducible nonnegative matrix, then adding edges to G shall result in increasing $\mu(G)$. So we can have $G=K_{s} \bigvee$ $\left(\bigcup_{i=1}^{q} K_{n_{i}}\right)$.

Lemma 2.4. If G^{*} is a graph with maximal signless Laplacian spectral radius in $\mathcal{G}_{n, \beta}$. Then there exists a nonnegative number q such that

$$
\begin{aligned}
G^{*} & =K_{s} \bigvee\left(K_{n_{q}} \bigcup \overline{K_{q-1}}\right) \\
q & =n+s-2 \beta, n_{q}=2 \beta-2 s+1
\end{aligned}
$$

Proof. By Lemma 2.3, a graph G with maximal signless Laplacian spectral radius should satisfy $G=K_{s} \bigvee\left(\bigcup_{i=1}^{q} K_{n_{i}}\right)$ where q is a nonnegative number. Let μ be the eigenvalue of $Q(G), X$ is a eigenvector corresponding to μ. From the symmetry of vertices in $K_{n_{i}}$ and K_{s}, we can assume the components of X corresponding to the vertices in $K_{n_{i}}$ are $x_{i}, 1 \leq i \leq q$, the components of X corresponding to the vertices in K_{s} are y. By (1), we have

$$
\left\{\begin{array}{l}
\left(\mu-2\left(n_{1}-1\right)-s\right) x_{1}-s y=0 \tag{2}\\
\left(\mu-2\left(n_{2}-1\right)-s\right) x_{2}-s y=0 \\
\cdots \cdots \cdots \\
\left(\mu-2\left(n_{i}-1\right)-s\right) x_{i}-s y=0 \\
\sum_{i=1}^{q} n_{i} x_{i}-(\mu-n-s+2) y=0
\end{array}\right.
$$

Let M_{k} be the coefficient matrix of system (2). Since $X \neq 0$, the determinant $\left|M_{k}\right|=0$. By solving $\left|M_{k}\right|$, we get the following relation

$$
\begin{aligned}
\left|M_{k}\right|= & \prod_{i=1}^{q}\left(\mu-2\left(n_{i}-1\right)-s\right) \\
& \times\left[\mu-n+2-s-\sum_{i=1}^{q} \frac{n_{i} s}{\mu-2\left(n_{i}-1\right)-s}\right]
\end{aligned}
$$

So $\mu(G)$ satisfies

$$
\mu-n+2-s-\sum_{i=1}^{q} \frac{n_{i} s}{\mu-2\left(n_{i}-1\right)-s}=0
$$

We consider the following function

$$
\begin{aligned}
& f(\delta, \mu)=\frac{\mu-n+2-s}{s}-\sum_{i=1}^{q-2} \frac{n_{i}}{\mu-2\left(n_{i}-1\right)-s} \\
& -\frac{n_{q-1}-\delta}{\mu-2\left(n_{q-1}-\delta-1\right)-s}-\frac{n_{q}+\delta}{\mu-2\left(n_{q}+\delta-1\right)-s}
\end{aligned}
$$

where $\mu \geq n$ and $0 \leq \delta \leq 2$.
Taking derivative with respect to δ, we have
$\frac{d f(\delta, \mu)}{d \delta}=(\mu-s+2)$
$\times \frac{4\left(n_{q}-n_{q-1}+2 \delta\right)\left(n_{q}+n_{q-1}-\mu+s-2\right)}{\left(\mu-2\left(n_{q-1}-\delta-1\right)\right)^{2}\left(\mu-2\left(n_{q}+\delta-1\right)-s\right)^{2}}<0$.
Then $f(\delta, \mu)$ is strictly decreasing with respect to δ for $\mu \geq n$.

Thus by Lemma 2.1, we have $f(2, \mu(G))<$ $f(0, \mu(G))=0$. This means that if we increase n_{q} by 2 and decrease n_{q-1} by 2 in G, the signless Laplacian spectral radius will increase, moreover, the resulting graph still has matching number β.

By repeating the above procedure, we can complete the proof.

Now we present our main result.
Theorem 2.5. Let $G \in \mathcal{G}_{n, \beta}$ be any graph on n vertices with matching number β. Then we have
(1). If $n=2 \beta$, or $2 \beta+1$, then $\mu(G) \leq \mu\left(K_{n}\right)$, with equality if and only if $G \cong K_{n}$;
(2). If $2 \beta+2 \leq n<\frac{5 \beta+3}{2}$, then $\mu(G) \leq 4 \beta$, with
equality if and only if $G \cong K_{2 \beta+1} \bigcup \overline{K_{n-2 \beta-1}}$;
(3). If $n=\frac{5 \beta+3}{2}$, then $\mu(G) \leq 4 \beta$, with equality if and only if $G \cong K_{\beta} \bigvee \overline{K_{n-\beta}}$, or $G \cong K_{2 \beta+1} \bigcup$ $\overline{K_{n-2 \beta-1}}$;
(4). If $n>\frac{5 \beta+3}{2}$, then $\mu(G) \leq \frac{1}{2}(n-2+2 \beta+$ $\left.\sqrt{(n-2+2 \beta)^{2}-8 \beta^{2}+8 \beta}\right)$, with equality if and only if $G \cong K_{\beta} \bigvee \overline{K_{n-\beta}}$.

Proof. From the proof of Lemma 2.4, we know that $\mu\left(G^{*}\right)$ satisfy $g(\mu)=0$, where

$$
\begin{aligned}
g(\mu)= & (\mu-n+2-s)(\mu-s)(\mu-4 \beta+3 s) \\
& -(n+s-2 \beta-1) s(\mu-4 \beta+3 s) \\
& -(\mu-s) s(2 \beta-2 s+1)
\end{aligned}
$$

It is easy to see that

$$
\begin{aligned}
g(s) & =4 s(\beta-s)(n+s-2 \beta-1) \geq 0 \\
g(4 \beta-3 s) & =-4 s(\beta-s)(2 \beta-2 s+1) \leq 0 \\
g(+\infty) & >0 \\
g(-\infty) & <0
\end{aligned}
$$

Hence the three roots of $g(\mu)=0$ lie in three intervals $(-\infty, s),(s, 4 \beta-3 s),(4 \beta-3 s,+\infty)$. So we conclude that $g(\mu)=0$ has exactly one root $\geq 4 \beta-3 s$.
(1). If $n=2 \beta$, or $2 \beta+1$, it is easy to know that $\mu(G) \leq \mu\left(K_{n}\right)$ with equality if and only if $G \cong K_{n}$.
(2). If $2 \beta+2<n<\frac{5 \beta+3}{2}$, by Lemma 2.4, we need just to verify that $\mu\left(G^{*}\right) \leq \mu(H)$, where $H=$ $K_{\beta} \bigvee \overline{K_{n-\beta}}$. A direct computation shows that $\mu(H)$ satisfy $h(\mu)=0$, where

$$
h(\mu)=\mu^{2}-(n-2+2 \beta) \mu+2 \beta^{2}-2 \beta .
$$

Moreover, if $\quad n<\frac{5 \beta+3}{2}, \quad \mu(H)<\mu\left(K_{2 \beta+1} \bigcup\right.$ $\left.\overline{K_{n-2 \beta-1}}\right)=4 \beta$.

A direct computation shows that

$$
\begin{aligned}
g(\mu)= & (\mu-4 \beta)\left(\mu^{2}+(-n+2+s) \mu\right. \\
& +s(12 \beta-3 n-4 s+4)) \\
& +2 s\left(20 \beta^{2}+10 \beta-4 s \beta-s-s^{2}-6 n \beta\right)
\end{aligned}
$$

So we can easily verify

$$
\begin{aligned}
& g(4 \beta)=2 s\left(20 \beta^{2}+10 \beta-4 s \beta-s-s^{2}-6 n \beta\right) \\
& \geq 2 s\left(20 \beta^{2}+10 \beta-4 s \beta-s-s^{2}-15 \beta^{2}-9 \beta\right) \\
& \quad=2 s\left(5 \beta^{2}+\beta-4 s \beta-s-s^{2}\right) \\
& \quad=2 s(\beta-s)(5 \beta+s+1) \geq 0
\end{aligned}
$$

This means that $\mu\left(G^{*}\right) \leq 4 \beta$. If $\mu\left(G^{*}\right)=4 \beta$, then $s=0$. From Lemma 2.4, we have $G^{*} \cong H$.
(3). If $n=\frac{5 \beta+3}{2}$, we have $g(4 \beta)=$ $2 s(\beta-s)(5 \beta+s+1) \geq 0$, hence, $\mu\left(G^{*}\right) \leq 4 \beta$.

If $\mu\left(G^{*}\right)=4 \beta$, then $s=0$, or $\beta=s$, which implies our result.
(4). If $n>\frac{5 \beta+3}{2}$, from the proof of (1), it is easy to see that $\mu(H)$ satisfies

$$
h(\mu)=\mu^{2}-(n-2+2 \beta) \mu+2 \beta^{2}-2 \beta=0
$$

where $H=K_{\beta} \bigvee \overline{K_{n-\beta}}$. Moreover, we know that

$$
\begin{aligned}
\mu(H)= & \frac{1}{2}(n-2+2 \beta) \\
& +\sqrt{(n-2+2 \beta)^{2}-8 \beta^{2}+8 \beta}>4 \beta
\end{aligned}
$$

So we have

$$
\begin{aligned}
g(\mu)= & h(\mu)(\mu-2 \beta+s) \\
& +(\beta-s)(2 n-2+4 s-6 \beta) \mu \\
& +(\beta-s)\left(2 s-6 s \beta-4 \beta+4 \beta^{2}+2 s^{2}\right)
\end{aligned}
$$

Hence we can verify

$$
\begin{aligned}
g(\mu(H))= & (\beta-s)(2 n-2+4 s-6 \beta) \mu(H) \\
& +(\beta-s)\left(2 s-6 s \beta-4 \beta+4 \beta^{2}+2 s^{2}\right) \\
\geq & (\beta-s)[(2 n-2+4 s-6 \beta) 4 \beta+2 s \\
& \left.-6 s \beta-4 \beta+4 \beta^{2}+2 s^{2}\right] \\
\geq & (\beta-s)[(5 \beta+3-2+4 s-6 \beta) 4 \beta+2 s \\
& \left.-6 s \beta-4 \beta+4 \beta^{2}+2 s^{2}\right] \\
= & (\beta-s)\left(10 s \beta+2 s+2 s^{2}\right) \\
= & 2 s(\beta-s)(5 \beta+s+1) \\
\geq & 0
\end{aligned}
$$

This means that $\mu\left(G^{*}\right) \leq \mu(H)$.
If $\mu\left(G^{*}\right)=\mu(H)$, then $\beta=s$, which implies our result.

Acknowledgements. The author would like to thank the anonymous referees for their valuable comments and suggestions. This work was supported by the Shandong Provincial Natural Science Foundation of China (No. Y2006A17) and Foundation of Shandong Provinvial Education Department (No. J07YH03).

References

[1] W. H. Haemers and E. Spence, Enumeration of cospectral graphs, European J. Combin. 25 (2004), no. 2, 199-211.
[2] J. A. Bondy and U. S. R. Murty, Graph theory with applications, American Elsevier Publishing Co., Inc., New York, 1976.
[3] Y. Fan, B. S. Tam, J. Zhou, Maximizing spectral radius of unoriented Laplacian matrix over bicyclic graphs of given order, Linear Multilinear Algebra 56 (2008), no. 4, 381-397.
[4] M. Desai and V. Rao, A characterization of the
smallest eigenvalue of a graph, J. Graph Theory 18 (1994), no. 2, 181-194.
5] D. Cvetković, P. Rowlinson and S. K. Simić, Signless Laplacians of finite graphs, Linear Algebra Appl. 423 (2007), no. 1, 155-171.
[6] R. B. Bapat, J. W. Grossman and D. M. Kulkarni, Generalized matrix tree theorem for mixed graphs, Linear and Multilinear Algebra 46 (1999), no. 4, 299-312.
[7] J. W. Grossman, D. M. Kulkarni and I. E. Schochetman, Algebraic graph theory without orientation, Linear Algebra Appl. 212/213 (1994), 289-307.
[8] D. Cvetković, Signless Laplacians and line graphs, Bull. Cl. Sci. Math. Nat. Sci. Math. No. 30 (2005), 85-92.
[9] L. Lovász, M.D. Plummer, Matching theory, Ann. Discrete Math. 29 (1986) 471-480.

[^0]: 2000 Mathematics Subject Classification. Primary 05C50, 15A18, 05C90.

