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Abstract: This article is a geometric application of polarized logarithmic Hodge theory of

Kazuya Kato and Sampei Usui. We prove generic Torelli theorem for the well-known quintic-

mirror family in two ways by using different logarithmic points at the boundary of the fine moduli

of polarized logarithmic Hodge structures.
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1. Review of quntic-mirror family. We

review the construction of the mirror family of the

pencil joining the quintic hypersurface of Fermat

type and the union of the coordinate hyperplanes

in a 4-dimensional complex projective space after

[M1].

Let  2 P1, and let

Q ¼
P5

j¼1 x
5
j � 5 

Q5
j¼1 xj ¼ 0

n o
� P4:ð1Þ

Let �5 ¼ f� 2 C j �5 ¼ 1g.
The singular members of the pencil (1) are

listed as follows:

(2) Over each point  2 �5 � C � P1, Q con-

tains 53 ¼ 125 ordinary double points ð�1; . . . ; �5Þ 2
ð�5Þ5=�5 � P4 with  �1 � � ��5 ¼ 1.

(3) Over1 2 P1, Q1 ¼
S
jfxj ¼ 0g. The union

of coordinate hyperplanes.

Let G ¼ f� 2 ð�5Þ5 j �1 � � ��5 ¼ 1g=�5. By mul-

tiplication, this becomes a group which acts on P4

coordinate-wise. This action of G preserves Q .

Taking the quotient Q =G, the following canonical

singularities appear:

(4) For each pair of distinct indices j, k, a

compound du Val singularity cA4 appears as

the quotient of the curve Q \ fxj ¼ xk ¼ 0g n
ð
S
m 6¼j;kfxm ¼ 0gÞ.
(5) For each triple of distinct indices j, k, l, the

point which is the quotient of the five points Q \
fxj ¼ xk ¼ xl ¼ 0g belongs to the closure of three

curves in (4).

Moreover, we see that holomorphic 3-forms

on Q are G-invariant for every  2 C by adjunc-

tion formula.

For  2 C, it is known that there is a simulta-

neous minimal desingularization W of these quo-

tient singularities, and that holomorphic 3-forms

extend to nowhere vanishing forms on W .

We thus have a pencil ðW Þ 2P1 whose singular

fibers are listed as follows:

(6) Over each point  2 �5 � C � P1, W has

one ordinary double point.

(7) Over  ¼ 1 2 P1, W is a normal crossing

divisor in the total space, whose components are

all rational.

The other membersW are smooth with Hodge

numbers hp;q ¼ 1 for pþ q ¼ 3.
By the action of � 2 �5, ðx1; . . . ; x5Þ 7! ð��1x1;

x2; . . . ; x5Þ, we have W� ’ W . Let � ¼  5, and let

(Wλ)λ ((Wψ)ψ)/µ5


�



�

(λ-plan) (ψ-plan)/µ5.

This pencil ðW�Þ�2P1 is the mirror of the original

pencil (1). (For more details of the above construc-

tion, see e.g. [M1].)

2. Review of fine moduli space �nD�. We

review some facts in [KU] that are necessary in the

present article.

Let w ¼ 3, and hp;q ¼ 1 ðpþ q ¼ 3; p; q � 0Þ. Let
H0 ¼

L4
j¼1 Zej, and he3; e1i0 ¼ he4; e2i0 ¼ 1. Let D

be the corresponding classifying space of polarized

Hodge structures, and �DD the compact dual.

Let S = (square free positive integers), and

let m 2 S. Define N�;N�;Nm 2 EndðH0; h ; i0Þ as

follows:

N�ðe3Þ ¼ e1; N�ðejÞ ¼ 0 ðj 6¼ 3Þ;
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N�ðe4Þ ¼ e3; N�ðe3Þ ¼ �e1;
N�ðe1Þ ¼ �e2; N�ðe2Þ ¼ 0;

Nmðe1Þ ¼ e3; Nmðe4Þ ¼ �me2;
Nmðe2Þ ¼ Nmðe3Þ ¼ 0:

Then the respective Hodge diamonds are

0 : • • • •
(3, 0) (2, 1) (1, 2) (0, 3)

Nα :

•
(2, 2)

• •
(3, 0)



� (0, 3)
•

(1, 1)

Nβ :

•
(3, 3)



�

•
(2, 2)



�

•
(1, 1)



�

•
(0, 0)

Nm :

• •
(3, 1) (1, 3)



�



�

• •
(2, 0) (0, 2)

Let �� ¼ R�0N�, �� ¼ R�0N�, and �m ¼
R�0Nm ðm 2 SÞ.

Proposition [KU, §12.3]. Let � = (rational

nilpotent cones in gR of rank � 1). Then � ¼
fAdðgÞ� j �¼f0g; ��; ��; �m ðm 2 SÞ; g 2 GQg. This
is a complete fan, i.e., if there exists Z � �DD such

that ð�; ZÞ is a nilpotent orbit, then � 2 �.

Here a pair ð�; ZÞ is a nilpotent orbit if Z ¼
expðCNÞF , NFp � Fp�1 ð8pÞ and expðiyNÞF 2 D
ðy� 0Þ hold for R�0N ¼ � and F 2 Z.

In [KU], the fine moduli space �nD� of

polarized logarithmic Hodge structures is con-

structed. We briefly explain this according to the

present case. Let � be a neat subgroup of GZ :¼
AutðH0; h ; i0Þ of finite index. As a set, D� ¼
fð�; ZÞ : nilpotent orbit j � 2 �; Z � �DDg. Let � 2 �,

and let �ð�Þ ¼ � \ expð�Þ. If � ¼ f0g, then D ’
fðf0g; F Þ j F 2 Dg � D�. If � 6¼ f0g, then �ð�Þ ’
N. Let � be its generator and let N ¼ log �.

Define

E� ¼
�
ðq; F Þ 2 C� �DD

����
expðð2�iÞ�1 logðqÞNÞF 2 D if q 6¼ 0; and

exp (CNÞF is a �-nilpotent orbit if q ¼ 0

�
;

and the map

E� ! �ð�ÞgpnD�; ðq; F Þ 7!ð1Þ

expðð2�iÞ�1 logðqÞNÞF mod �ð�Þgp if q 6¼ 0,

ð�; expðCNÞF Þ mod �ð�Þgp if q ¼ 0.

(

Here �ð�Þgp is the subgroup of � generated by �ð�Þ.
C� �DD is obviously an analytic manifold. We endow

this with the logarithmic structure M associated

to the divisor f0g � �DD. The strong topology of E�

in C� �DD is defined as follows: A subset U of E� is

open if, for any analytic space Y and any analytic

morphsm f : Y ! C� �DD such that fðY Þ � E�,

f�1ðUÞ is open in Y . By (1), the quotient topology,

the sheaf O of local rings over C, and the

logarithmic structure M are introduced on

�ð�ÞgpnD�. Introduce the corresponding structures

O, M on �nD� so that �ð�ÞgpnD� ! �nD� ð� 2 �Þ
are local isomorphisms and form an open covering.

Then, the resulting �nD� is a ‘‘logarithmic mani-

fold’’, which is nearly a logarithmic analytic

space but has ‘‘slits’’ at the boundaries. In fact,

in the present case, we have in [KU, §12.3]

that dimCD ¼ 4, but dimC �ð��ÞgpnðD�� �DÞ ¼ 2,
dimC �ð��ÞgpnðD�� �DÞ ¼ 1 and dimC �ð�mÞgpn
ðD�m �DÞ ¼ 1.

3. Period map. Let � be a unit disc,

�� ¼ �� f0g, and h! ��, z 7! q ¼ e2�iz, the uni-

versal covering. Let ’ : �� ! h�inD be a period

map, where h�i is the monodromy group generated

by a unipotent element �, and ~’’ : h! D a lifting.

Let N ¼ log �. The map expð�zNÞ~’’ðzÞ from h to D

drops down to the map  : �� ! D.

Then the nilpotent orbit theorem of Schmid

asserts that there exists the limit  ð0Þ, denoted by

F , and that ~’’ðzÞ and expðzNÞF are closing as

Im z!1.

Let � ¼ R�0N . In our space h�inD� we have,

moreover, expðzNÞF ! ðð�; expð�CÞF Þ mod h�iÞ as
Im z!1. Hence ’ðqÞ ! ðð�; expð�CÞF Þ mod h�iÞ
as q ! 0 in h�inD�. (For details, see [KU].)

144 S. USUI [Vol. 84(A),



Fix a point b 2 P1 � f0; 1;1g on the �-plane,

identify H3ðWb;ZÞ ¼ H0, and let

� ¼ Imageð�1ðP1 � f0; 1;1gÞ ! GZÞ:ð1Þ

This � is not neat. In fact, the local monodromy

around 0 is of order 5. Let

P1 � f0; 1;1g ! �nDð2Þ

be the period map. Since KW�
is trivial, the differ-

ential of (2) is injective everywhere. Endow P1 with

the logarithmic structure associated to the divisor

f1;1g. Then, by §1, §2 and [KU], (2) extends to a

morphism

’ : P1 ! �nD�;ð3Þ
0 7! ðpointÞ mod � 2 �nD;
1 7! ðAdðgÞð��Þ-nilpotent orbit

for some g 2 GQÞ mod �;

1 7! ðAdðgÞð��Þ-nilpotent orbit
for some g 2 GQÞ mod �:

of logarithmic ringed spaces (cf. [KU, 4.3.1 (i)]).

The image of the extended period map ’ is an

analytic curve, which is not affected by the slits

of the space �nD�.

Let X ¼ �nD�. Let P1 ¼ 1; P1 ¼ 1 2 P1, and

let Q1 ¼ ’ðP1Þ; Q1 ¼ ’ðP1Þ 2 X. Then, by the

observation of local monodromy and holomorphic

3-form basing on the descriptions in §1 and §2,

we have

’�1ðQ�Þ ¼ fP�g for � ¼ 1;1:ð4Þ

4. Generic Torelli theorem. We use the

notation in the previous sections.

Theorem. The period map ’ in §3 (3) is the

normalization of analytic spaces over its image.

Proof. We use the fs logarithmic point P1

and its image Q1 at the boundaries (§3). Since

’�1ðQ1Þ ¼ fP1g (§3 (4)), it is enough to show that

the local ramification index at Q1 is one, i.e.,

Claim. ðMX=O�XÞQ1
! ðMP1=O�

P1ÞP1
is sur-

jective.

Let N :¼ N� be the nilpotent endomorphism

introduced in §2.

Let ~qq be a local coordinate on a neighborhood U

of P1 ¼ 1 in P1, and let z ¼ ð2�iÞ�1 log ~qq be a branch

over U � fP1g. Then expð�zNÞe3 ¼ e3 � ze1 is sin-

gle-valued. Let !ð~qqÞ be a local frame of the locally

free OP1-module F 3. Write !ð~qqÞ ¼
P4

j¼1 ajð~qqÞej, and
define t ¼ �a1ð~qqÞ=a3ð~qqÞ. Then

t ¼
he3; !ð~qqÞi0
he1; !ð~qqÞi0

¼
hexpð�zNÞe3; !ð~qqÞi0 þ zhe1; !ð~qqÞi0

he1; !ð~qqÞi0
¼ zþ ðsingle-valued holomorphic function in ~qqÞ:

Let q ¼ e2�it. Then q ¼ u~qq for some u 2 O�
P1;P1

. Let V

be a neighborhood of Q1 in X ¼ �nD�. We have a

composite morphism of fs logarithmic local ringed

spaces

U ! V ! C; ~qq 7! q ¼ e2�ið�a1=a3Þ ð¼ u~qqÞ:

Hence the composite morphism ðMP1=O�
P1ÞP1

 
ðMX=O�XÞQ1

 ðMC=O�CÞ0 of reduced logarithmic

structures is an isomorphism. The claim follows.

In fact, that is an isomorphism since the rank of

ðMX=O�XÞQ1
is one in the present case. �

5. The second proof, and logarithmic

generic Torelli theorem. In this section, we

give another proof of the generic Torelli theorem in

§4 by using the fs logarithmic points P1 and Q1 at

the boundaries.

Since ’�1ðQ1Þ ¼ fP1g (§3 (4)), it is enough to

show the following

Claim. ðMX=O�XÞQ1 ! ðMP1=O�P1ÞP1 is sur-

jective.

Proof. Let N be the logarithm of the local

monodromy at � ¼ 1. Let �1, �2, �1, �2 be

the integral symplectic basis of H0 given in

[M1, Appendix C], and let

g0 ¼ �2; g1 ¼ 2�1 þ �1; g2 ¼ �2; g3 ¼ �1 þ �1:

Then g3, g2, g1, g0 is another integral symplectic

basis such that g0, g1 is a good integral basis of

ImageðN2Þ in the sense of [M1, 2, Appendix C].

Using the result there, we have

ðNðg3Þ; Nðg2Þ; Nðg1Þ; Nðg0ÞÞ

¼ ðg3; g2; g1; g0Þ

0 �1 0 0

0 0 0 0

�5 �9=2 0 0

�9=2 25=6 1 0

0
BBB@

1
CCCA:

Let ~qq be a local coordinate on a neighborhood U

of P1 ¼ 1 in P1, and let z ¼ ð2�iÞ�1 log ~qq be a

branch over U � fP1g. Then expð�zNÞg1 ¼ g1 �
zg0 is single-valued. Let !ð~qqÞ be a local frame of

the locally free OP1 -module F 3. Write !ð~qqÞ ¼P3
j¼0 bjð~qqÞgj, and define t ¼ b3ð~qqÞ=b2ð~qqÞ and q ¼

e2�it. Then, as in §4, we see q ¼ u~qq for some u 2
O�

P1;P1
, and the claim follows. �
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Combining the results in §4 and §5, we have

the following refinement.

Theorem. The period map ’ in §3 (3) is the

normalization of fs logarithmic analytic spaces over

its image. Here the normalization of the image of ’

is endowed with the pull-back logarithmic structure.

Note. Canonical coordinates in [M1,M2], like

q in the proofs of Claims in §4 and §5, can be

understood more naturally in the context of PLH.

Problem 1. Eliminate the possibility that

the image ’ðP1Þ would have singularities in Theo-

rems in §4 and §5.

Problem 2. Describe the global monodromy

group � explicitly. Generators of � are computed

[COGP], [M1,Appendix C], and � is known to be

Zariski dense in GZ ¼ Spð4;ZÞ [COGP], [D, 13].
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