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Abstract:

June 10, 2008)

We present three new proofs of the trace theorem of L, Sobolev spaces, which

do not rely on the theory of interpolation spaces. The first method originates in Morrey’s proof
for the Sobolev embedding theorem concerning the Holder-Zygmund space. The second method
is based on Muramatu’s integral formula and the third method is based on an integral operator
with Gauss kernel. These methods give unified viewpoints for the proofs of the trace theorem and

the Sobolev embedding theorem.
Key words:

Introduction. The trace theorem of L,
Sobolev spaces Hy(R") has an important role in
the boundary value problems of partial differential
equations. It is usually proved by the theory of
interpolation spaces (see [1,2,8]). There are also
elementary proofs which do not rely on the theory
of interpolation spaces (see [3,4,7]).

In this paper, we present three new proofs
of the trace theorem. The first method, for o = 1, is
direct and originates in Morrey’s proof for the
Sobolev embedding theorem concerning the Holder-
Zygmund space. The second method, for o =m
with a positive integer m, is based on Muramatu’s
integral formula [6]. The third method, for general
o, is based on an integral operator with Gauss
kernel.

In any method, we adopt the characterization
by the difference operator as the definition of the
Besove space B? (R") with 0 >0 and 1 < p < oo,

vy
which is given below. Let ¢ be written as

c=j+71, jEN, 0<7<1,
and set
1+ 1, )P 1/p
= dx dh ,
| 111) /u /u |h|7'p+n

= Z |u @) |B;p(Rn),

|arl=j

|U|ng(R”)

where Ny is the set of non-negative integers, Ay
is the difference operator given by Aju(z) =
u(z + h) —u(z) and [7] denotes the largest integer
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not exceeding 7. Then the Besov space ng(R”) is
defined by

B (R") ={ue€ H)(R"): |U|ng(R”) < 0o},
and the norm is given by

- Z |\“(“>\|L,,<R") + [ulp, ge)-

lol<j

HUHBZP(R“)
Usual modification for p = oo defines B7 (R"),
which is written as C7(R").

The trace theorem is stated as follows:

Theorem 1. Letn, k be integers withn > 2,
1<k<mn,andletl <p<ooando>k/p. Letx €
R" be written as x = (¢, 2") with 2 € R"™* and
z" € R".

Then the trace operator Tr : S(R") — S(R"F)
defined by

(Tru)(z')

can be extended to a bounded linear operator
Hy(R") — Bg;k/p(R"’k). Namely, there exists a
constant C depending only onn, k, p and o such that

=u(2',0), ueSR")

© I Trully e < Clull g,
In particular, if 0 = m with an integer m > 0 then

(2) |TI‘U‘B;:;—A/1) R") >~ O Z ||U ||L Rn

|a|=m

Any of our methods to prove Theorem 1 also
works for the proof of Theorem 2 below, which
corresponds to the case kK =n in Theorem 1.

Theorem 2. Letn be an integer withn > 1,
and let 1 < p < oo and o > n/p.
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Then H7(R") is continuously embedded in
CcoP(RY). Namely, there exists a constant C
depending only on n, p and o such that

(3) [l vy < Cllullg ey

In any method, the estimate of the Besov
seminorm is reduced to the following lemma, which
is a special case of boundedness theorem on integral
operators.

Lemma 0.1.
1<p<oo, and let K(s) be a measurable function
of s € Ry = (0,00). Then the linear operator

@ 1 (i) o |dy

is bounded from L,(RF, ly|"dy) to L,(R/, \h| "' dh) if
K is in L1(Ry,ds/s), and it is bounded from
L,(R", |yl Fdy) to Loo(RY) if K is in L,(Ry,ds/s)
withp ' 4+q¢g 1 =1.

In the following sections we denote by C
various constants depending only on n, k, p and o
which may differ from line to line.

1. Application of Morrey’s method. Let
o=1. In order to provide insight into the first
method, we review Morrey’s proof [5, pp.79-80] of
Theorem 2 briefly.

In the proof of Theorem 2 we have to obtain the
estimate

(5) lu(x +2h) —u(x)| < Cla/""",

Let k, | be positive integers, let

heR"

for u e H;(R”). To do so we consider the mean
value of u(z) on the ball of radius |h| centered at
x+ h:

1

@ By,
where By, is the ball of radius |h| centered at the

origin and |By| denotes the volume of Bj. Then we
get (5) by evaluating

my(z) — u(z)

my,(z) = u(z + h+ 2)dz,

1 1
=— dz/ Vu(r + sh+sz) - (h+ 2) ds
| Bl /5,

and my,(z) — u(z + 2h).

If we note that the Sobolev embedding theorem
is concerned with the restriction of a function to a
point, O-dimensional hyperplane, and that Bj is
an n-dimensional ball, we can translate the idea
of Morrey’s method for the proof of Theorem 1 as
follows:
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“In order to estimate the restriction of a
function to an (n — k)-dimensional hyperplane,
consider the mean value of the function on a k-
dimensional ball.”

Proof of Theorem 1 for o = 1. It is suffi-
cient to show (1) and (2) for u € S(R"), since S(R")
is dense in Hl(R”) We write a point x € R" as z =
( 2"y e R"F x R*. For he R"* set B, = {¢' €

: |¢’| < |h|} and denote by |Bj| the k-dimen-
Sional volume of By,.

To evaluate u(z’ + 2h,0) — u(2’,0) we set

1
(6) my(2) = — | u(z'+h,2")d"
|Bh| By,
and
Fi(a") = my(2') — u(a’,0)
1 1
= Bil s dz”/ Vu(z' + sh,sz") - (h,2")ds
h

Using Minkowski’s inequality, changing the

variables with 3’ =32, and writing v(z") =
Vu(-,2")|lf, g+, We have
) 1Ewll L, ety

TG

<0\h|—’f”/p/ ds/ e
:C\hrk%/p/ s’kds/ v(y") dy"

0 [v"1<s|h|

1

= C\h|7k+k/p/ {/ s_kds}v(y”) dy"

[v"1<Ihl LS 1y"|/[A]

|y | 11k/ dy”
:0/ A <|h| HERIE) )}Iy”lk”

where \(s) = s* #/P(s'F —1)/(k— 1) for 0 < s <1,
E>1, \(s)=s""?(=logs) for 0<s<1, and
Ai(s)=0 for s>1, k>1. Hence, Lemma 0.1
implies

n—k dZ”
L,(R"™")

”Fh”Lp(R"’k)

|h|17k/p < CHVUHLF(R”)v

Ly(R*™* |h[*"dh)

1 Fnll L, @)

sup -
) /p

heR"*
for Ay € L1(R4,ds/s) N Loo(R4).
We get a similar estimate for

Gi(2') :==my(2') — u(z’ + 2h,0).
u(z’ + 2h,0) —u(a’,0) =

< C||Vull g,

So (2)
Fy(az) —

follows from

Gh(l‘/).
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We now evaluate the L, norm of wu(z/,0).
We have already seen that |[|Fy, g <
C’|h|1_k/p||VuHLp(Rn). On the other hand, we have
by (6) and Holder’s inequality

—k
ol sy < CIA] annymmmﬂ@”
h

—k
< Cla ™ llull gy
Thus u(2',0) = my(z') — Fj,(2') with |h] = 1 gives
[ Tr u||Lp(R7"k) < C”UHH;(R"y

This combined with (2) yields (1). O
Remark 1.1. In the proof we can replace By,
by By, N (R.)". Then we obtain
”TruHB,l,;k/”(R"’k) < C||U|‘H;(Rn—kx(R+)k).

Remark 1.2. Our first method is very sim-
ilar to that of DiBenedetto [4] who proved
Theorem 1 for o0 =1 and k = 1. He derived (2) by
setting my (') = u(a’ + h, |h|) instead of (6) and
using the inequality

-+ by 1) = w0l gt
1
:zvﬁmyA'HVu«,ﬂmnuAmqyk

and the identity
1P1 5 sl ey

Ly(R" |h* ™" dh)
—1\1
= (wn—ls 1) /pHvu||L,,(R”’1><R+)7

which is obtained by integration in polar coordi-
nates. Here w,_; denotes the surface area of the
unit sphere in R"!. Whereas his method requires
another consideration to obtain u(z',0) € L,(R"™"),
in our method this is an immediate consequence
of my, F € L,(R™).

2. Method of Muramatu’s formula. In
this section we assume that m is a positive integer.
Before giving the proof of Theorem 1 for o0 = m we
briefly review Muramatu’s formula, which expresses
a function by its regularizations.

Choose a function pe€ CP(R") satistying
Jrrp(x)dz =1 and suppp C {z € R": |z| < 1}.
Let N be a positive integer and set

o) = 3~ o {at pla)),

laj<N ¢
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For t >0 we set wi(z)=t"w(z/t) and M(z) =
t™"M(xz/t). Using the relations 9 {wi(z)} =
—t7*My(z) and lim;_, ;o w; x f(z) = f(x), we have

R
(8) ﬂ@ZA.M*ﬂm%+wwﬂm,R>o

for f € S(R"). Taking the limit as R — oo, we also
have

(9) ﬂ@zAmM*mw%.

We note that the relation
(M), f(a) = (D), 5 O ()

«

holds for 0 < § < a by integration by parts.
In the argument below, it is convenient to
assume that p(x) is written in the form

(10) p(z) = po(a’)pr(a")

with pg € C°(R™ %) and p; € CF(RF).
Proof of Theorem 1 for o =m. Let u €
S(R") and let

(11) m—k/p=j+7, jeNy, 0<7<L

First we shall evaluate ||'LL((Y)(§C/,O)HLP(RN—I\') for
a=(a/,0) € NI7F x NI with |a| < j. Applying (8)
with N =m, R=1and f = (Ja| < j) and using
integration by parts, we have

! dt
W)= Y / Pl (K ) &
|B=m 0
+ wgw) * u(x)

with some functions K,3 € C°(R"). It is easily seen
that

| K * f(2, O)HLP(R“”") < ”Kﬁ”Ll(Lq)”f”Lp(R”')
< t_k/pHK”Ll(Lq)

e, mn

for KeCPR"), where p'l4+g¢g'=1 and

||K||L1(Lq) = Jgrr ||K(m’,x”)||Lq(R;;H) dz'. Hence

(12)  fu(- Ol o)

! m—|a|—k/p [ dt
<C Z / el k/[Hu(ﬁ)HLp(R"') r
|B]=m 0
()
+ o N e vl z, @y
< Cllull gy gy

where we used m — |o| — k/p=(j — |a|) + 7 > 0.
Next we shall evaluate the Besov seminorm of
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ul® (2',0), assuming a = (o, 0) with |a| = j. Apply-
ing (9) with f = u(®) and using integration by parts,
we have

R . dt
E / " (Kap), + ul? (z) "
0

|8|l=m

ul®(z) =

with some functions
we have

K. € CP(R"). In view of (10)

HNWRMM ] P

o) ()

for h € R"™* where x(s) is a characteristic function
of the interval [0,1] and 7(s) = min{s, 1} for s > 0.

Hence, writing Uﬁ(l‘”):||U<“6)<',.'I}”)HLP(Rn—k), we
have
1+[7] (a
1ALl (- 0) ), oy
|h["
< (IR at
<’ — -
. Zl;w”@> t

|Bl=m

x / x<%> vs(y') dy'

—cgj/ (ﬁbﬂww @»é%,

|B]=m

where K(s) =s" [ t'n(s™1¢! Y1 qt and p =
T—k+k/p Thus, 1nequahty (2) follows from
Lemma 0.1, for

1+ [7]

00 1 1+[T] dS
A %E) P C R e g

Since S(R") is dense in H"(R"), (12) with (2)
yields Theorem 1 for o = m. O

Remark 2.1. In [6] Muramatu proved
Theorem 1 for k=1 and general o, using the
second integral formula, which is derived by iterat-
ing (8), and the characterization of HJ(R") by
L,(R", Ly([0,1],¢71dt)). If o is a positive integer,
the proof is simplified as above.

3. Method of Gauss kernel. Let (D) with
o> 0 be the Fourier multiplier with symbol (£)7,

—T

where (£) = /14 |¢]>. As is well known, (D)’
defines  isomorphisms H7(R") — L,(R") and

S(R") — S(R™). So if we set f=
H7(R") then w=(D)™"

||f||L ®) < Cllull g ey
then

(D)u for u e
f and feL,(R") with
In particular, if u € S(R")
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(13) ()= (20" [ e TEE de

with f € S(R"), where Ff stands for the Fourier
transform of f, i.e., Ff(&) = [ e ™ f(x) dx
For an integer [ > 1 we set

Gi(w) = (4m) e Gy (w) = Gy (w)t)

for t >0, w= (wi,...,w;) € R. Then the third
method starts with formula (14) below.

Lemma 3.1. Let ue S(R") and fe SR")
satisfy u = (D) 7 f with 0 > 0. Then

(14) wu(z) = c(,/ -l t dt/ Gni(z —y) f(y) dy
0 R"
with ¢, = 2T (0/2) ™"
Proof. The lemma follows from substitution of

&7 = cg/ o160 gt
0

n (13), Fubini’s theorem and the formula of the
Fourier transform of e~ 1", O

Proof of Theorem 1 for general o. Let u €
S(R") and let

oc—klp=j+7, jEN; 0<7<L

First we shall evaluate ||u(® (z, O, e for
a=(d,0) € N” Fx Nk with |a| < 3. Replacmg u
and f by ul® and f19 respectively, in (14) and
integrating by parts, we have

(15) w@(2,0) = c(,/ e dt
0

!

x | G = )G

R”

Since G4l -ty < O and Gl ey =

yll) dy/ dy”.

Ct %7 with p~* + ¢! =1, we have
(16) ||U (', )HL[)(Rn—k)
< C”fHLP(R”') / t”f‘”"*(k/]’)*leftz gt
0
< Ol o

where we used o — |a] — k/p = (j — |a]) + 7> 0.
Next we shall evaluate the Besov seminorm of
ul®(2',0), assuming o = (o, 0) with |a| = j. Since

1+([7] ~(e! 7 |h| i
HA Gn kaL R'”L <Ct t

for he 1{71,—147 (15)
1 @)l vy, that

gives, with o(z") =
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1+[7]  (a
1AL (L 0)]| oty

|h|"
o g/ |n\ T de
o ()
o b\t t

i
X /R" exp(— 7 )v(y") dy"
Y| K dy’
—cf kK<—|h| W7o}

where pw=1—k+k/p and K(s) =
s t“’e‘l/(‘l‘?)n(s_lt_l)H[T]t_ldt. Therefore, apply-
ing Lemma 0.1, we have

(17)

|Tr U|Bg;k/l’<Rn—k) S C”f”Lp(Rn)

Since S(R") is dense in H(R"), (16) and (17)
yield Theorem 1. [l

Remark 3.2. The method of Gauss kernel
is in the same line as Stein’s proof in [7], where he
used the formula

u(z) = | K(zr—y)f(y)dy

R"
with K (z) = (2m) ™" [ga €(€) "7 d¢, which is associ-
ated with Bessel functions. In our method we can
avoid the difficulty of handling the singularity of
the kernel K(z).

As stated in the Introduction, our methods
also work for the proof of Theorem 2. Here we
give it by the method of Gauss kernel.

Proof of Theorem 2. We have only to show
(3) for u € S(R™). Let o be written as

c—n/p=j+71, jEN; 0<7<L

First let |o| < j. Then a formula similar to (15)
and ||G$2||L0(Rn) < Ctlelr with p ' +qt =1
give

(18)  [u(x)]

< Il e /O ool /1 gy

< Cllfllz, @

since 0 — |a| —n/p=(j — |a]) + 7> 0.
Next let |a] =j. Then a formula similar to
(15) and

A ) < Cyinlp IR\
H h n,t”Lq(R“) <Ct n T
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give
A1+[T] ()
(19) | h |}z1|'7— (Z‘)‘
/T |h| 1+[7] dt
<Al [ () 0(5) §
< ClIfllg, @me-
Thus (3) follows from (18) and (19). O

Acknowledgements. The author wishes to
thank the referee for the valuable comments which
particularly simplified the proofs of Theorem 1 by
regarding an integral operator

oo t dt |y//| dy//
Hy|l — | — H = |V
/0 0(h|> p /Rk 1( ; (v") |y,,|k

with Hy, H; € Li (R, ds/s) not as a composition of
two bounded linear operators

L(R*,50) — Ly(Ry, ) — LR, )

I ‘Il/lk I ‘hln—lv

but as a bounded linear operator

a a
V- / K(M) V(y") dyk
R\ A d

with K(s) = [~ Ho(st)Hy(t™ ")t dt.
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