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Abstract:
resultant of two polynomials over a field.

Key words:

1. Preliminaries. We introduce some gen-
eral theory on tropical geometry. For further de-
tails, please refer to [2—4].

Let T denote the set RU{—00}. & and ® are
the tropical operators defined over T by a ® b :=
max(a,b),a®@b:=a+0b. (T,8,®) is a semifield
called the tropical semifield.

By T[z] := T[z1,...,2,] we mean the set of
tropical polynomials in n variables over the tropical
semifield. For instance, 2> & 0= 2’ @ (—o0)z & 0.
We denote the set of tropical polynomial functions

in m variables over the tropical semifield as
Poly(T")"; Poly(T") := T[z]/ ~, where

F ~ G <= F(p) = G(p) for every p € T".

Theorem 1.1 [3,5]. Ewvery nonconstant ele-
ment of Poly(T) can be decomposed into the product
of linear functions.

In particular, T is “algebraically closed”.

For a polynomial

F=Y" aza'eT,

VISV
we define the tropical hypersurface V(F) as
V(F)={p=(p1,--.,pn) € T" |
F(p) =amp’ =ayp”, 27,70, J#J'}.

Note that V(F) D {p € T" | F(p) = —oc}.

If both F,G € T[z] are the representatives
of f € Poly(T"), then V(F)=V(G) holds. So we
define V(f) to be V(F).

We call a point in V(F) a zero of F. Following
[1], we say that F € T[z]| (resp. f € Poly(T")) is
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The resultant of two tropical polynomials satisfies the similar properties to the

Tropical geometry; tropical semiring; max-plus algebra.

tropically singular at p € T" if p is a zero of F' (resp.
)

Let the determinant of a matrix A € M(n,T)
to be defined as the permanent under tropical
operators;

det(A) = Z Hai,a(i).

e, i=1

2. Results. First, we define the tropical
Sylvester matrix and the tropical resultant to a
tropical polynomial as a natural analogy of ordinary
ones.

For positive integers n,m, the tropical Syl-

vester matrix in (n+m+2) indeterminants
M((Co,---,Cn)s (M0y- - sMm)) is defined as
M((Cos---5Cn)s (Moy -y m)) i=
GoCrovv o Cn —00
Co Ci-vnenn Cn
. m
—OQ0 oo Cn
Mo mnm -+ ... Nm _ OO
Mo M1 -+ .. Mm
) n
—00 o M -+ -« Nim,

We define the tropical resultant R((Co,...,C),
(Moy---,mm)) as the determinant of the tropical
Sylvester matrix;

R((Gos - --+Gn)s (10, - - -y 7m)) =
det M((Co, ey Cn)v (’I’]Q7 ..

Note that R((¢o,---,C)s (M0, - --
element of T[Co, ..., Cuy M0y -+ M)
For tropical polynomials F' = agx" @ --- @ ay,

anm))-

,Mm)) 1s an
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G=byx"™® - Dby, (n,m>1), we denote
M((ag, ..., an), (bo,---,by)) as M(F,G) and
R((ag,---,an), (bo,---,bm)) as R(F, Q).
Put A € T[z1,...,Tn, Y1, -, Ym] 8S
A= H (i @ yj).
1<i<n
1<j<m
Theorem 2.1. For two nonconstant tropical
polynomials

Fraz®ar)...(a,)
GNb0($@ﬁ1)($@ﬁm)

the following holds:

o R(F,G)=al'bjAle, B), wherea = (o ..., ),
Q = (517 s 7ﬂm)-

e R(, ) is tropically singular at (F,G) if and
only if A(, ) is tropically singular at (a, ).
Remark 1. A(, ) is tropically singular at

(o, B) if and only if o, = G, holds for some p, q.

Corollary 2.2. If F~F and G~ G then
R(F,G) = R(F',G") holds and R(, ) is tropically
singular at (F,G) if and only if it is tropically
singular at (F',G'").

This corollary shows that the tropical resultant
can be naturally defined over tropical polynomial
functions even though it is determined by the
coefficients of tropical polynomials.

Definition 2. For two tropical polynomial
functions f,g € Poly(T) with the representatives
being F,G € T|x], we define R(f,g) as R(F,QG).
We say that R( , ) is tropically singular at (f,g) if
it is tropically singular at (F,G).

Main Theorem. For two nonconstant trop-
ical polynomial functions

f=azdal)...(z® o)
g=by(z®p1)... (D Bn)

the following holds:
o R(f,g) =al'bjA(e, B), where o= (aq...,0),
8= (517 cee aﬂm)-
e R(, ) is tropically singular at (f,g) if and only

if A(, ) is tropically singular at (o, B).

Thus, in this sense, R(F,G) equals A(a, ()
including the singularity. In particular two tropical
polynomial functions f,g have the same “zero” if
and only if the resultant is tropically singular at
(f,9)-

3. Proof of Theorem 2.1. In the rest of this
paper, we shall prove Theorem 2.1.

Put F:aom"@~~@an, G:boxm@@bm
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Without loss of generality, we assume
® ay = b() = 0,

® (=g = =0 > 04 > 2 O,
L4 ﬂl Zﬂ2 Z zﬂm;
e a1 > .
Lemma 3.1. If R(F,G)= —oco, then A(a,
B) = —o0. The inverse also holds.
Proof. Since R(F,G)> o™ a@ g, R(F,G)=
—oo yields a, = 3, = —co. Then we have A(a,
§) = —ox

On the other hand, if «, =3, = —cc0 then
every element of the (m + n)-th column of M(F, G)
is —0o. So we have R(F,G) = —c0. O

We assume R(F,G) # —oo from here on (and
A(a, ) # —o0 also). Then 8; > —oo.

Put M,(F,G) (resp. My(F,G)) to be the
submatrix obtained by deleting the first row (resp.
(m 4+ 1)-th row) and the first column of M(F,G).
Then R(F,G) = agdet M1 (F,G) @ by det My (F,G).

Set the degree of (F,G) as

deg(F,G) = {

1, if norm =1,

n+m, otherwise.

We will show the theorem inductively over
deg(F, G).

The following lemma is obvious from the direct
calculation.

Lemma 3.2.
holds.

We assume both n,m > 2 from here on.

3.1. The equality. Put a; :=a;...q;, l}; =
Bi...0; (1 <i<n,1<j<m). Then

Fmﬁ::x"@cﬁx”_léﬂ--@@,

Ifn orm =1, then the theorem

GrGi=0" Dbz @ @by

deg(F, @) = deg(F, G) holds.

The following lemma holds since a; > «; holds
for every i.

Lemma 3.3. a; < aja;_1 holds for every i.

Denote the (i, j)-th element of a matrix A by
Aij.

Lemma~3.~4. There exists o € Gnim-1 such
that det Mz (F, G) = [[; Ma(F, G), ;) and i — o(i) #
1 for every i < m.

Proof. For an arbitary o, put N(o)=
#{i<m|i—o(i)=1}. Put S to be the subset
of Guipm1 defined by S={c|detM(F,G)=
Hi Ms(F, G)i,ﬂ(i)}'

Suppose gy € S satisfies N(0p) < N(o) for ev-
ery o € S. If N(0p) #0, then put t = min{i < m |

i
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i—o(i) =1} and set 0 = oo (t,t —1). Then oy is

an element of S satisfying N(oy1) < N(op) from

Lemma 3.3. U
Similary, we have the following lemma.
Lemma 3.5. There exists 0 € Gyypy—1 Such

that det My(F,G) =[], Mi(F,G), ,;, and i-
o(i) #m. N
Proposition 3.6. R(F,G) = A(a, ).
Proof. From Lemma 3.4, we have
det My(F,G) = R(F', @), where
F=@ga"'®  da=m(@®a)... (2.

Since deg(F",G) < deg(F,G), we have det My (F,G) =
o' [[;11(a; @ B;) by the assumption of the induction.

Similarly, we have det M ( F G)
By Hj;él(ai @ ;) and thus
R(F,G) = H(al ®B)@al | [(ci @ B;)
J#1 i#1
= A, B).
O

We will now show that R(F, é) R(F,G).
Lemma 3.7. a; < a;, bj < b; for every i, j.
Proof. Suppose a, > a, for some p. Then

& -1
Flay) =ay &, & dar...«
— n—p+1
aq ... Oépfl()ép
n—p

P

< apaz_i < Fl(ap).

= apa

O

Remark 3. This lemma can also be shown
from the general theory of tropical geometry since
their extended Newton polytopes coincide.

Corollary 3.8. R(F,G)< R(F,G).

If a; = —o0, we have R(F,G) = R(z" ® exz" ' &
ax" 2@ - @ a,,q) for sufficiently small € > —oco
since R(F,G) # —oo. So we assume a; # —oo from
here on.

Let the integers af, > --- > o/, satisfy

o @a~a(red)... (z@d).

Lemma 3.9. d),...,a) satisfies the follow-
mngs
{aiga;, if 2<i<s,
i =al, if i>s,

a1 ...04 :G,lOL/Q...Ol;.
Proof. Since "B ar" B

a1)...(x®ay,), we have

Da, ~(x®
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z" @ all‘nil & D a7l|w§(n = alxnil ©--- 0 an|w§a1
as the tropical polynomial functions. Hence the first
part follows.

Then since

1
of =0 @ Da,

=ai(a1 @) ... (u®ay)

!/ n—s

/
= 0104 ... 000

and o = -+ = a3 # —oo holds, we have

a1 ...04 :alo/z...oz;.
Proposition 3.10. R(F,G) > R(F,G).
Proof. Since det My(F,G) > R(a1x" 1@ -+ @
ay, G) holds,
R(F,G) > det My(F,QG)
> R(alalc”’1 S Bay,,G)

=a’ H o; @ fj)

27&1
_ oy Tl @ )
i>5
= O/ln o a;n H(Ozl ©® ﬁj)

i>5

= H(Oéi, B p;) = R(ﬁ, é)

(I

So we have R(F,G) > R(F,G) > R(F,G).

3.2. Tropical singularity.

Lemma 3.11. If ;= —oco, then R(, ) is
tropically singular at (F,G) if and only if A(, ) is
tropically singular at (o, 8).

Proof. Obvious from calculation. If a,, = —o0,
then F = z(apx" ' @ - @ a,_1) 50 a,, = —00. O

We assume 31 (and «; also) not to be —co from
here on.

Note that det M;(, ) and det My(, ) are the
elements of T[Co, .-, oy N0y - -+ Tn)-

From Proposition 3.10, we have R(F,G) =
det My (F,G) (> det My (F,G)). Thus R( , ) is tropi-
cally singular at (F,G) if and only if either
det M1 (F, G) = det My(F, G) or det Ma( , ) is tropi-
cally singular at (F,G). Suppose det M;(F,G) =
det My(F,G) holds. Then since det M;(F,G) <

det M, (F,G) = 37 [1j41(ci ® B)), we have aq = fi.
On the other hand, if oy = #; holds, then we have
det M1 (F,G) = det Mx(F,G) and thus R(,) is

tropically singular at (F,G).
Suppose  det My(F,G) > det My(F,G), or
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equivalently, a; > (1. The following lemma is a
stronger version of Lemma 3.4.

Lemma 3.12. If o0€G6,m satisfies
det My(F,G) = [[, Ma(F, G) then o(i)—i>
s — 1 holds for every i < m.

Proof. As before, let S be the subset of
Gpimo1_ defined by S={o]|detMy(F,G)=
IL My (F, G); 51} For an arbitary o, put N'(o) =
#{i<m|o(i)—i<s—1}.

Suppose o0p € S satisfies N'(0p) >1 and
N'(op) = min{N'(c) | 0 € S}. Put r =max{op(i) |
o0(i) —i < s—1, i <m}. Then either o5'(r+1) <
oyt (r) or m+1<o;'(r+1)<m+7r+1 holds.
We define o7 as follows:

e Casel: oyl (r+1) <oyl(r);
Put oy = 0y 0 (o5 (r), 05 (r + 1)).
o Case2:m+1<oyl(r+1)<m+r+1;
Put oy = 0y 0 (o5 (r), 05 (r +1)).
o Case3: 0, (r+1)=m+r+1;
Put o1 =090 (05" (), 05 (r +1) = 1,05 (r +1)).

i,0(i)’

Then oy satisfies [[, Ma(F,G),, ) > I1; Ma(F,
G); (i) A contradiction. O
Corollary 3.13. detMs(, ) s tropically

singular at (F,QG) if and only if R(, ) is tropically

singular at (2" ' @ - @ ay, 5) B
Proof. < is obvious since det My(F,G) =

R(aiz" '@ - @ a,,G). = is a consequence of the

previous lemma. O
Thus we have

R(, ) is tropically singular at (F, Q)
|} (by assumption)
det My( , ) is tropically singular at (F, Q)
U (a; < a;,b; < b~J)
det My( , ) is tropically singular at (F, é)
|} (Corollary 3.13)
R(, ) is tropically singular at

(dlenfl @___@d;an’é)
|} (assmption of induction)

A(, ) is tropically singular at (¢, 3)
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and
A(, ) is tropically singular at (¢, 3)
I (o1 > )
ay =0, p>2"
|} (Lemma 3.9)
of, =B, p>27
I
A(, ) is tropically singular at
((dyy..oyal), (B, ..

|} (assmption of induction)

s Bm))

R(, ) is tropically singular at

(2" ' @ @ a2, G)
I (Rlaz" '@ - ®ay,,G) = det My(F,G))
det Ms( , ) is tropically singular at (F,G)
4
R(, ) is tropically singular at (F,G).
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