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Abstract: Let p be a prime and L an An-extension over a number field K. The aim of this

paper is to estimate the ratio of the p-class number of L to the ambiguous p-class number of L

with respect to K.
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Let p denote a fixed prime number throughout

this paper. For an algebraic number field of finite

degree K, denote the p-Sylow subgroup of the ideal

class group of K by ClKfpg. Put hKfpg ¼ ]ClKfpg.
Consider a finite Galois extension L=K. We put

AmbL=K :¼ fx 2 ClLfpg j 8� 2 GalðL=KÞ : x� ¼ xg

and

aL=K :¼ ]AmbL=K:

They are called the ambiguous p-class group and

the ambiguous p-class number of L with respect to

K, respectively.

In [1], Ohta obtained the following

Theorem 1 (Ohta [1], see Theorem 5). As-

sume p is odd and GalðL=KÞ is isomorphic to Sn, the

symmetric group of degree n for some n � 5. Let M

denote the unique intermediate field of L=K so that

½M : K� ¼ 2. If hLfpg > aL=M then hLfpg=aL=K is

divisible by p3.

The main result of this paper is the following

theorem, which is similar to the above. We consider

an An-extension instead of Sn.

Theorem 2. Let L be a finite Galois exten-

sion over K an algebraic number field of finite

degree. Assume n � 5 and GalðL=KÞ is isomorphic

to An, the alternating group of degree n. Let l be

the maximal prime number satisfying l 6¼ p and

l � ffiffiffi
n

p
. If hLfpg > aL=K then hLfpg=aL=K is divisible

by plþ1.

Note that this Theorem implies Theorem 1

since l � 2 and aL=M � aL=K.

Using this Theorem, we have the following

corollary.

Corollary 3. Suppose 5 � n < p. Let L be a

Galois extension of K such that GalðL=KÞ ’ An. Let

l be the maximal prime number satisfying l � ffiffiffi
n

p
.

(1) If hLfpg > hKfpg, then hLfpg is divisible by

plþ1hKfpg.
(2) If hLfpg > hKfpg, then

]KerðNL=K : ClLfpg ! ClKfpgÞ

is divisible by plþ1.

Proof. (1) Since GalðL=KÞ ’ An, we can apply

Theorem 2 to L=K. Granting Proposition 4 below,

we have the conclusion.

(2) The norm map NL=K : ClLfpg ! ClKfpg is

surjective since n < p. We obtain the following

relation

]KerðNL=K : ClLfpg ! ClKfpgÞ ¼ hLfpg=hKfpg:

It follows from (1) that ]KerðNL=K : ClLfpg !
ClKfpgÞ is divisible by plþ1. �

In the above proof, we used the following fact.

Proposition 4 (Cornel&Rosen [2], Lemma3).

Let L be a Galois extension over K and M an

intermediate field of L=K. If ½L : M� is not divisible
by p, then ClMfpg ’ AmbL=M .

We devote the rest of this paper to the proof of

Theorem 2. We need the following fact.

Theorem 5 (Ohta [1], Theorem 2). Assume

l is a prime and p 6¼ l. Let L be a Galois extension

over K whose Galois group is the abelian group of

type ðl; lÞ. Let M0;M1; � � �Ml be the lþ 1 distinct

intermediate fields of L=K with ½Mi : K� ¼ l. If

hLfpg > 1 then ClLfpg=AmbL=K is decomposed into

the direct sum as following

ClLfpg=AmbL=K ’
Ml

i¼0

AmbL=Mi
=AmbL=K:
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For distinct elements of a1; a2; � � � ; at in

f1; 2; � � � ; ng, we denote by ða1 a2 � � � atÞ the cyclic

permutation in Sn which sends ai to aiþ1 for 1 �
i � t� 1 and at to a1, as usual.

Lemma 6. Let l be a prime with l � ffiffiffi
n

p
.

Consider the elements in An,

� :¼ ð1 2 � � � lÞðlþ 1 lþ 2 � � � 2lÞ
� � � ðl2 � lþ 1 l2 � lþ 2 � � � l2Þ

and

� :¼ ð1 lþ 1 2lþ 1 � � � l2 � lþ 1Þð2 lþ 2 � � � l2 � lþ 2Þ
� � � ðl 2l � � � l2Þ:

Then, lþ 1 elements �; ��; �2�; � � � ; �l�1�; � are con-

jugate each other in An. And so, h�; �i ’ Z=lZ�
Z=lZ.

Proof. It is easy to see h�; �i ’ Z=lZ� Z=lZ.

If l ¼ 2, then we have � ¼ ð1 4 2Þ�ð1 2 4Þ ¼
ð1 3 2Þ��ð1 2 3Þ. We consider the case l 6¼ 2. Fix

i 2 f1; � � � ; lg and put ’ :¼ �i� . Then,

’ ¼ ð1 ’ð1Þ ’2ð1Þ � � �’l�1ð1ÞÞð2 ’ð2Þ � � �’l�1ð2ÞÞ
� � � ðl ’ðlÞ � � �’l�1ðlÞÞ:

Therefore, �; ��; �2�; � � � ; �l�1�; � are conjugate each

other in Sn because they consist of the same number

of disjoint cycles of the same length. We show � and

�i� are conjugate in An. There exists � 2 Sn such

that �i� ¼ ����1. If � 2 Sn r An, put

� :¼ ð1 ’ð1ÞÞð2 ’ð2ÞÞ � � � ðl ’ðlÞÞ:

We have �� 2 An and �i� ¼ ð��Þ�ð��Þ�1 because

�� ¼ ��. Therefore, �; ��; �2�; � � � ; �l�1; � are conju-

gate each other in An. �

Now we give a proof of Theorem 2. Let � and �

be the permutations appeared in Lemma 6. We

regard them the elements in GalðL=KÞ. Let F be

the fixed field of h�; �i in L. Let M0; � � � ;Ml be

the fixed fields of the subgroups h�i; h�1�i; � � � ;
h�l�1�i; h�i of h�; �i in L, respectively. Then L=F

is a Galois extension whose Galois group is the

abelian group of type ðl; lÞ. Applying Theorem 5

to L=F , we obtain the following decomposition:

Ml

i¼0

AmbL=Mi
=AmbL=F ’ ClLfpg=AmbL=F ;

which yields

Yl
i¼0

aL=Mi

aL=F
¼

hLfpg
aL=F

:

As M0; � � � ;Ml are conjugate over K by Lemma 6,

we have aL=M0
¼ � � � ¼ aL=Ml

. Hence�
aL=M0

aL=F

�lþ1

¼
hLfpg
aL=F

:

Since hLfpg=aL=K is divisible by hLfpg=aL=F , it

suffices to show that hLfpg > aL=F under the

assumption hLfpg > aL=K , to complete the proof.

Now assume that hLfpg ¼ aL=F . Then we have

AmbL=F ¼ ClLfpg. Moreover, AmbL=F 0 ¼ ClLfpg for
any conjugate field F 0 of F over K. We note

that the intersection of all conjugates of F over K

coincides with K, because it is Galois over K and

GalðL=KÞ ’ An that is simple for n � 5.

Therefore we obtain

AmbL=K ¼
\

AmbL=F 0 ¼ ClLfpg;

where F 0 runs over all conjugates of F=K. This

completes the proof.
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