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Abstract: As a new aspect of the Arnold strange duality among 14 unimodal singularities,

we point out that there exists a duality in linking pairing on Seifert manifolds associated with

singularities.
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1. Introduction. We study the weighted

homogeneous polynomials fðx; y; zÞ in C3;

f td1 x; td2 y; td3 z
� �

¼ td fðx; y; zÞ;

where ðd1; d2; d3Þ is the weight, and d is the degree.

We suppose that the variety

V ¼ fðx; y; zÞ ¼ 0f g

has an isolated singularity at the origin. Classifica-

tion of singularities has been widely studied [1] (see

also e.g. [3]), and among them we pay attention to

singularities listed in Tables I and II. These singu-

larities in Tables I and II are respectively called the

ADE singularities and the exceptional unimodal

singularities.

Arnold observed that there exists a duality

among 14 unimodal singularities [1]. This ‘‘strange

duality’’ is related to the mirror symmetry from

string theory, and it is interpreted from the view-

point of the weight system [13,17]. Purpose of this

Letter is to show that the strange duality can also

be seen as a duality of linking pairing, which is a

symmetric bilinear pairing on the torsion subgroup

of the first homology group, on 3-manifolds asso-

ciated with Arnold’s singularities;

Theorem 1 (Duality of linking pairing). Let

X and X� be dual unimodal singularities in Arnold’s

sense, and let M and M� be the Seifert manifolds

associated with X and X� respectively as (2). Then

M and M� have the isomorphic first homology

group H1, and we have a duality of the linking

pairing,

�M ¼ ��M� :ð1Þ

In the rest of this Letter, we briefly review

Arnold’s strange duality, and we give a proof of

Theorem 1.

2. Arnold’s strange duality. It is well

known that isolated singularities in V are related

to tessellations. Let � be the triangle with angles

�=p1, �=p2, and �=p3. The ADE singularities and the

unimodal singularities in Tables I and II respec-

tively correspond to quotient singularity associated

with spherical and hyperbolic triangles. In the case

of the hyperbolic triangle �, the triangle group �

generated by the reflections with respect to the

sides of � includes an invariant subgroup �0 of finite
index which acts on H without fixed points, and the

quotient H=�0 is a compact Riemann surface �.
Then there exists a canonical morphism � ! P1 ¼
H=�. The singularity in Table II is isomorphic to

this triangular singularity [4]. The triple ðp1; p2; p3Þ
is called the Dolgachev number. It is known that the

Milnor lattice ðH2ðF ;ZÞ; hiÞ of the unimodal singu-

larities, where F is the Milnor fiber, is Tb1;b2;b3 �
0 1
1 0

� �
. Here Tb1;b2;b3 is the Coxeter–Dynkin dia-

gram of star type with length b1; b2; b3. The

triple ðb1; b2; b3Þ is the Gabrielov number of the

singularity [9].

Theorem (Arnold’s strange duality [1]). Let

X be a singularity among Arnold’s 14 unimodal

singularities in Table II. Then there exists a

unimodal singularity X� whose Gabrielov number

ðb�1; b�2; b�3Þ coincides with the Dolgachev number

ðp1; p2; p3Þ of X.

One of interpretations of the strange duality

follows from the weight systems associated with the

unimodal singularities [13]. The weight systemW ¼
ðd1; d2; d3; dÞ denotes a set of the weight ðd1; d2; d3Þ
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Table I. ADE singularities

X fðx; y; zÞ ðd1; d2; d3Þ d ðp1; p2; p3Þ H1ðM;ZÞ �M CSðMÞ

D4K x4K�1 þ x y2 þ z2 ð2; 4K � 2; 4K � 1Þ 8K � 2 ð2; 2; 4K � 2Þ Z2 � Z2

0
1

2
1

2
0

0
B@

1
CA

�
� ð2mþ 1Þ2

16K � 8

�

for 0 � m � 2K � 2

D4Kþ2 x4Kþ1 þ x y2 þ z2 ð2; 4K; 4K þ 1Þ 8K þ 2 ð2; 2; 4KÞ Z2 � Z2
1

2

� �
� 1

2

� � �
� ð2mþ 1Þ2

16K

�

for 0 � m � 2K � 1

D4Kþ1 x4K þ x y2 þ z2 ð2; 4K � 1; 4KÞ 8K ð2; 2; 4K � 1Þ Z4
3

4

� � �
� ð2mþ 1Þ2

16K � 4

�

for 0 � m � 2K � 2

D4Kþ3 x4Kþ2 þ x y2 þ z2 ð2; 4K þ 1; 4K þ 2Þ 8K þ 4 ð2; 2; 4K þ 1Þ Z4
1

4

� � �
� ð2mþ 1Þ2

16K þ 4

�

for 0 � m � 2K � 1

E6 x4 þ y3 þ z2 ð3; 4; 6Þ 12 ð2; 3; 3Þ Z3
2

3

� �
� 1

24

� �

E7 x3 yþ y3 þ z2 ð4; 6; 9Þ 18 ð2; 3; 4Þ Z2
1

2

� �
� 1

48
;�25

48

� �

E8 x5 þ y3 þ z2 ð6; 10; 15Þ 30 ð2; 3; 5Þ 0 ? � 1

120
;� 49

120

� �

8
2

K
.
H
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A
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8
4
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Table II. Unimodal singularities

X fðx; y; zÞ ðd1; d2; d3Þ d
Dolgachev Gabrielov

H1ðM;ZÞ �M CSðMÞ
ðp1; p2; p3Þ ðb1; b2; b3Þ

E12 x7 þ y3 þ z2 ð6; 14; 21Þ 42 ð2; 3; 7Þ ð2; 3; 7Þ 0 ?
25

168
;� 47

168

� �

E13 x5 yþ y3 þ z2 ð4; 10; 15Þ 30 ð2; 4; 5Þ ð2; 3; 8Þ Z2
1

2

� �
9

80
;
49

80

� �

E14 x8 þ y3 þ z2 ð3; 8; 12Þ 24 ð3; 3; 4Þ ð2; 3; 9Þ Z3
2

3

� �
1

12
;
25

48

� �

Z11 x5 þ x y3 þ z2 ð6; 8; 15Þ 30 ð2; 3; 8Þ ð2; 4; 5Þ Z2
1

2

� �
25

96
;
73

96

� �

Z12 x4 yþ x y3 þ z2 ð4; 6; 11Þ 22 ð2; 4; 6Þ ð2; 4; 6Þ Z2 � Z2
1

2

� �
� 1

2

� �
3

16
;
11

16

� �

Z13 x6 þ x y3 þ z2 ð3; 5; 9Þ 18 ð3; 3; 5Þ ð2; 4; 7Þ Z2 � Z3
1

2

� �
� 2

3

� �
2

15
;
19

30

� �

W12 x5 þ y4 þ z2 ð4; 5; 10Þ 20 ð2; 5; 5Þ ð2; 5; 5Þ Z5
3

5

� �
5

8
;
9

40

� �

W13 x4 yþ y4 þ z2 ð3; 4; 8Þ 16 ð3; 4; 4Þ ð2; 5; 6Þ Z8
5

8

� �
1

6
;
13

24

� �

Q10 x4 þ y3 þ x z2 ð6; 8; 9Þ 24 ð2; 3; 9Þ ð3; 3; 4Þ Z3
1

3

� �
49

72
;
25

72
;� 5

24

� �

Q11 x3 yþ y3 þ x z2 ð4; 6; 7Þ 18 ð2; 4; 7Þ ð3; 3; 5Þ Z2 � Z3
1

2

� �
� 1

3

� � 19

112
;
75

112
;

� 29

112
;
27

112

8><
>:

9>=
>;

Q12 x5 þ y3 þ x z2 ð3; 5; 6Þ 15 ð3; 3; 6Þ ð3; 3; 6Þ Z3 � Z3
1

3

� �
� 2

3

� �
5

24
;
17

24
;
1

6
;
2

3

� �

S11 x4 þ y2 zþ x z2 ð4; 5; 6Þ 16 ð2; 5; 6Þ ð3; 4; 4Þ Z8
3

8

� �
7

10
;
19

30
;
3

10

� �

S12 x3 yþ y2 zþ x z2 ð3; 4; 5Þ 13 ð3; 4; 5Þ ð3; 4; 5Þ Z13
5

13

� � 13

60
;
37

60
;

133

240
;
157

240

8><
>:

9>=
>;

U12 x4 þ y3 þ z3 ð3; 4; 4Þ 12 ð4; 4; 4Þ ð4; 4; 4Þ Z4 � Z4

1

2

1

4
1

4

1

2

0
B@

1
CA 9

16
;
1

4

� �

N
o
.
7
]
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and the degree d of polynomials. For two weight

systems, W ¼ ðd1; d2; d3; dÞ and W � ¼ ðd�1; d�2; d�3; d�Þ,
a 3� 3 matrix Q with non-negative elements is

defined by

d1; d2; d3ð ÞQ ¼ d; d; dð Þ; Q

d�1
d�2
d�3

0
B@

1
CA ¼

d�

d�

d�

0
B@

1
CA:

This matrix is called a weight magic square. Two

weight systems, W and W �, are dual if there exists

a weight magic square Q for ðW;W �Þ with

jjjjj detQ jjjjj ¼ d ¼ d�.
Theorem (Kobayashi’s duality [13]). Let W

be a weight system for Arnold’s unimodal singularity

X. Then there exists a dual weight system W � for

unimodal singularity X� which is dual to X in

Arnold’s sense.

Another aspect of the strange duality is

due to [17]. A characteristic homeomorphism of

the Milnor fiber F induces an automorphism,

C : H2ðF ;ZÞ ! H2ðF ;ZÞ, called the Milnor mono-

dromy operator, and its eigenvalues are roots of

unity. Thus the characteristic polynomial, �ðtÞ ¼
detðt� CÞ, is written as

�ðtÞ ¼ 1� td

1� t

Y3
i¼1

1� tpi

1� tdi
¼

Y
mjh

tm � 1ð Þ�m;

where h is the order of C, and �m is the cyclotomic

exponent. A dual polynomial ��ðtÞ is defined by

��ðtÞ ¼
Y
kjh

tk � 1
� ���h=k :

Theorem (Saito’s duality [17]). If �ðtÞ is the
characteristic polynomial for Arnold’s singularity

X, a dual polynomial ��ðtÞ is the characteristic

polynomial for X� which is dual to X in Arnold’s

sense.

3. Duality of linking pairing. Let V

be the variety V ¼ ffðx; y; zÞ ¼ 0g for a weighted

homogeneous polynomial fðx; y; zÞ of weight

ðd1; d2; d3Þ. We have a natural C�-action on V given

by

tðx; y; zÞ ¼ td1 x; td2 y; td3 z
� �

for t 2 C�. To the isolated singularity of V at the

origin, we associate the closed oriented 3-manifold

M given by

M ¼ V \ S5ð2Þ

with a sufficiently small 5-sphere around the origin.

With respect to the S1-action induced from the C�-
action on V , M is a Seifert manifold. As was studied

in [15], its Seifert invariant is given as follows: The

Seifert manifold M has 3 singular fibers along

fx ¼ 0g, fy ¼ 0g, fz ¼ 0g, and the Seifert invariant

ðg; b; ðp1; q1Þ; ðp2; q2Þ; ðp3; q3ÞÞ is calculated from a

given f in the way written in [15]. In particular,

for the f’s in Tables I and II, we can show by

calculating each case concretely that the Seifert

invariant is ð0;�1; ðp1; 1Þ; ðp2; 1Þ; ðp3; 1ÞÞ for the pi’s

written in the tables.

We recall the definition of the linking pairing

�M on a closed oriented 3-manifold M. The linking

pairing is a symmetric bilinear form

�M : TorH1ðM;ZÞ � TorH1ðM;ZÞ ! Q=Z;

where TorH1ðM;ZÞ denotes the torsion part of

H1ðM;ZÞ. For a;a0 2 TorH1ðM;ZÞ, we define

�Mða;a0Þ 2 Q=Z as follows: We choose a non-zero

integer s such that sa ¼ 0 2 H1ðM;ZÞ, and set a

2-chain B which is bounded as @B ¼ sa. We put

�Mða;a0Þ ¼
#ðB � a0Þ

s
mod Z:

This is well defined, independently of the choices of

s and B. See [12] for the classification of linking

pairings on 3-manifolds.

Proof of Theorem 1. We compute the link-

ing pairing of the Seifert manifold M of type

ð0; b; ðp1; q1Þ; ðp2; q2Þ; ðp3; q3ÞÞ as follows: We have

H1ðM;ZÞ

¼� spanZ x1;x2;x3;hf g=
pi xi þ qi h

for i ¼ 1; 2; 3

x1 þ x2 þ x3 � bh

8><
>:

9>=
>;

¼� Z4=AZ4;ð3Þ

where

A ¼

p1 1

p2 1

p3 1

q1 q2 q3 �b

0
BBB@

1
CCCA:ð4Þ

The order of H1ðM;ZÞ is equal to jjjjj detA jjjjj. We

suppose that jjjjj detA jjjjj 6¼ 0; this holds for all cases

which we need in the following of this proof. Then

we identify TorH1ðM;ZÞ with Z4=AZ4. For

‘; ‘0 2 Z4, we compute �Mð‘; ‘0Þ as follows: Here ‘ ¼
ð‘1; ‘2; ‘3; ‘4ÞT means a generator, ‘1 x1 þ ‘2 x2 þ
‘3 x3 þ ‘4 h, as (3). We thus have s 2 Z 6¼0 and m ¼

84 K. HIKAMI [Vol. 84(A),



ðm1;m2;m3;m4ÞT 2 Z4 such that s ‘ ¼ Am. As mi

corresponds to the number of meridian disks of

the i-th solid torus, we obtain by definition

�Mð‘; ‘0Þ ¼
1

s
mT

q1

q2

q3

1

0
BBB@

1
CCCA‘0

¼ ‘T A0ð Þ�1
‘0;ð5Þ

where

A0 ¼

p1
q1

1
p2
q2

1
p3
q3

1

1 1 1 �b

0
BBBB@

1
CCCCA:ð6Þ

By use of an integral unimodular matrix P,

the matrix ðA0Þ�1 is block-diagonalized as

PT ðA0Þ�1 P ¼ �� ð	1Þ � � � � � ð	1Þ mod Z.

We calculate �M for the cases in Table II. We

take an example E14. As we have H1ðM;ZÞ ¼� Z3

due to jjjjj detA jjjjj ¼ 3, the linking pairing may be ð13Þ
or ð23Þ. Since we have ‘T ðA0Þ�1 ‘ ¼ 2

3 mod Z with

‘ ¼ ð1; 0; 0; 0ÞT , we conclude that �M ¼ ð23Þ. In the

case of Z12, we have from (3)

H1ðM;ZÞ ¼� Z4=spanZ

1

1

1

0

0
BBB@

1
CCCA;

0

2

0

0

0
BBB@

1
CCCA;

0

0

2

0

0
BBB@

1
CCCA;

0

0

0

1

0
BBB@

1
CCCA

8>>><
>>>:

9>>>=
>>>;

¼� Z2 � Z2:

Taking generators, ‘1 ¼ ð0; 1; 1; 0ÞT and ‘2 ¼

ð0; 0; 1; 0ÞT , we get ð‘iT ðA0Þ�1 ‘jÞi;j¼1;2 ¼
1
2

0

0 1
2

� �

mod Z, which proves that the linking pairing is

ð12Þ � ð12Þ. In this way we obtain symmetric matrices

for M associated with the unimodal singularities as

in Table II.

We show (1) for the cases in Table II.

It is straightforward to verify the duality E13 $
Z11, E14 $ Q10, Z13 $ Q11, W13 $ S11, and the

self-duality of E12, Z12, Q12, because the linking

pairing ðabÞ is dual to ð�a
b Þ in the sense of (1). In the

cases of W12 and S12, we note that �3
5 ‘2 ¼

3
5 ð2 ‘Þ2 mod Z, and that �5

13 ‘2 ¼ 5
13 ð5 ‘Þ2 mod Z.

For U12, we use a unimodular matrix to find

1 1
0 1

� �T � 1
2 � 1

4

� 1
4 � 1

2

� �
1 1
0 1

� �
¼

1
2

1
4

1
4

1
2

� �
mod Z.

This completes the proof. �

4. Concluding remarks. We have shown

that there exists a duality of linking pairing on the

Seifert manifolds associated with Arnold’s 14 un-

imodal singularities. It should be noted that the

ADE singularities in Table I do not have such

duality of linking pairing while they are self-dual in

both Kobayashi’s and Saito’s senses.

The Arnold strange duality has received re-

newed interests related to the mirror symmetry

from string theory. Due to that the duality of

weight system is related to the polar duality [2,7], it

is discussed [5,6,8,16] that the Arnold strange

duality is regarded as a two-dimensional analogue

of the mirror symmetry of Calabi–Yau manifolds.

We observe a duality of linking pairing on the

Seifert manifold M associated with Arnold’s singu-

larities X based on explicit computations of the

SU(2) Witten–Reshetikhin–Turaev (WRT) invari-

ant �NðMÞ for M. This result supports our decom-

position conjecture proposed in [11]. It is noted that

the Chern–Simons invariant CSðMÞ in Tables I and

II is taken from asymptotic behaviors of the WRT

invariants �NðMÞ in N ! 1. See [10] for another

aspect of the strange duality from the viewpoint of

quantum invariants. See also [14] where invariant

of 3-manifolds was constructed as a generalization

of the WRT invariant at N ¼ 3 based on linking

matrices.
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