A remark on tame dynamics in compact complex manifolds

By Kazutoshi MAEGAWA

Department of Mathematics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

(Communicated by Shigefumi MORI, M.J.A., Feb. 12, 2008)

Abstract: We will investigate the dynamics of a holomorphic self-map f of a compact complex manifold M such that the sequence $\{f^n\}_{n\geq 1}$ has at least one subsequence which converges uniformly on M.

Key words: Normal family; Lefschetz fixed-point theory; compact complex manifolds.

1. Introduction. Let f denote a holomorphic self-map of a compact complex manifold M. We suppose that the sequence $\{f^n\}_{n\geq 1}$ has at least one subsequence which converges uniformly on M. Our purpose is to investigate the dynamics of f by using results in [4]. First, we will show that the number of possible periods of periodic points of f is finite. This implies that there exists an integer $p \geq 1$ such that the dynamics of f^p on the minimal image of M is an 'irrationally rotation' around a pointwise-fixed closed submanifold. Moreover, when the number of periodic points of f is finite, we will show that the number of periodic points of f is guard and the number of periodic points of f is finite.

2. Results. Let f be a holomorphic self-map of a (connected) compact complex manifold M. We denote the *n*-th iterate of f by f^n , i.e. $f^n :=$ $f \circ \cdots \circ f$ (n times). Since M is compact, the image $f^n(M)$ for any $n \ge 1$ is a compact irreducible analytic subset of M. Hence, there is an integer $m \ge 1$ such that $f^m(M) = f^{m+1}(M) = \cdots$. We call $f^m(M)$ the minimal image and denote it by M_f . The restriction $f|M_f$ is a surjective holomorphic self-map of M_f . When $f|M_f$ is of topological degree 1, the set M_f is a complex submanifold in M (for instance, see [4]). Particularly, when $\{f^n\}_{n\ge 1}$ is a normal family on M, it is the case.

Let us introduce a concept of tameness of f.

Definition 2.1. Let f be a holomorphic selfmap of a compact complex manifold M. We say that f is tame if the sequence $\{f^n\}_{n\geq 1}$ has at least one subsequence which converges uniformly on M.

We have an equivalent condition for f to be tame.

Theorem 2.2 (Theorem 2.4 (a) in [4]). Let f be a holomorphic self-map of a compact complex manifold M. Then, $\{f^n\}_{n\geq 1}$ is a normal family on M if and only if f is tame.

To state our theorem, we will prepare some notions and notations.

Definition 2.3. Let f be a holomorphic self-map of a compact complex manifold M and let $p \in M$. We say that p is a fixed point of f if f(p) = p. We denote by $\operatorname{Fix}(f)$ the set of fixed points of f. Let k be an integer ≥ 1 . We say that p is a periodic point of period k of f if $f^k(p) = p$ and $f^i(p) \neq p$ for 0 < i < k. We denote by $\operatorname{Per}(f)$ the set of periodic points of f, in other words, $\operatorname{Per}(f) := \bigcup_{n \geq 1} \operatorname{Fix}(f^n)$.

Let us denote by $\chi(N)$ the Euler characteristic of a compact manifold N and by $\sharp A$ the cardinality of a set A.

Theorem 2.4. Let f be a tame holomorphic self-map of a compact complex manifold M. Then, the number of possible periods of periodic points of f is finite and Per(f) forms a (not necessarily connected) closed complex submanifold in M. Moreover, if dim_C Per(f) = 0, then $\sharp Per(f) = \chi(M_f)$.

Proof. When f is tame, the minimal image M_f is a complex submanifold in M and $f|M_f$ is an automorphism on M_f . So, without loss of generality, we may assume that $M = M_f$ and f is an automorphism on M. Let $\operatorname{Aut}(M)$ denote the space of holomorphic automorphisms on M with C^0 -topology. By the Bochner-Montgomery theorem [2], the space $\operatorname{Aut}(M)$ has a structure of (complex) Lie group.

By results in [4], the closure $\overline{\{f^n\}}_{n\geq 1}$ (\subset Aut(M)) is a commutative Lie subgroup of Aut(M) and there are integers $p \geq 1, q \geq 0$ such that

²⁰⁰⁰ Mathematics Subject Classification. Primary 32H50; Secondary 55M20, 57R20.

No. 3]

$$\overline{\{f^n\}}_{n\geq 1}\simeq (\mathbf{Z}/p\mathbf{Z})\times \mathbf{T}^q,$$

where the symbol \simeq stands for an isomorphism in the sense of Lie groups and \mathbf{T}^q stands for a torus of real dimension q. Particularly, $\overline{\{f^n\}}_{n\geq 1} = \frac{1}{\{f^n\}_{n\in \mathbf{Z}}}$. the identity map Id_M on M and $\overline{\{f^n\}}_{n\geq 1} = \frac{1}{\{f^n\}_{n\in \mathbf{Z}}}$. Let V_0 denote the connected component of $\overline{\{f^n\}}_{n\geq 1}$ which contains Id_M . Then, $V_0 \simeq \mathbf{T}^q$ and $f^p (\in V_0)$ generates V_0 .

Let a be any integer ≥ 1 . Assume that $z \in \text{Fix}(f^a)$. Then, $f^{pa}(z) = z$. Since f^p generates V_0 , it follows that f^{pa} also generates V_0 . Hence, there is a sequence $\{f^{n_j pa}\}_{j\geq 1}$ which converges to f^p uniformly on M as $j \to +\infty$. So,

$$z = \lim_{j \to +\infty} f^{n_j p a}(z) = f^p(z).$$

This implies that $\operatorname{Fix}(f^a) \subset \operatorname{Fix}(f^p)$. Thus, the number of possible periods of periodic points of f is finite and

$$\operatorname{Per}(f) = \operatorname{Fix}(f^p),$$

where $Fix(f^p)$ is obviously a closed analytic subset in M.

In order to show that $\operatorname{Fix}(f^p)$ is non-singular, we have only to consider the linearization of f^p in a neighborhood of any point $z \in \operatorname{Fix}(f^p)$. The method of the linearization is already known (for instance, see the proof of Proposition 2.5.9 in [1]) and actually f^p is conjugate to a diagonal matrix. (Since the sequence of the iterates of f^p is normal and all the eigenvalues of any fixed point of f^p have modulus 1, the Jordan normal form should be a diagonal matrix.)

Now, we will assume that $\dim_{\mathbb{C}} \operatorname{Per}(f) = 0$, i.e. $\operatorname{Per}(f)$ is a finite set. Let us show $\#\operatorname{Per}(f) = \chi(M)$. It can be done like the proof of the Hopf index theorem for vector fields. First, we will note that all fixed points of f^p are non-degenerate, i.e. 1 is not an eigenvalue. (Around any fixed point z of f^p , we can linearize f^p . So, if 1 is an eigenvalue of z, it follows that $\dim_{\mathbb{C}} \operatorname{Fix}(f^p) \geq 1$. This is a contradiction to the assumption $\dim_{\mathbb{C}} \operatorname{Per}(f) = 0$.) Hence, we can use the Lefschetz fixed-point formula (see p. 421 [3]), that is,

$$\sum_{\in \operatorname{Fix}(f^p)} \iota_{f^p}(z) = L(f^p),$$

2

where $\iota_{f^p}(z)$ is the index of f^p at z and $L(f^p)$ is the Lefschetz number of f^p . Here, $\iota_{f^p}(z) = 1$ for any $z \in$ Fix (f^p) because f^p is holomorphic. Since f^p is an element of V_0 , it follows that f^p is homotopic to Id_M. Hence $L(f^p) = \chi(M)$. So, the formula implies that $\sharp \text{Fix}(f^p) = \chi(M)$, that is, $\sharp \text{Per}(f) = \chi(M)$.

References

- [1] M. Abate, Iteration theory of holomorphic maps on taut manifolds, Mediterranean, Rende, 1989.
- [2] S. Bochner and D. Montgomery, Groups on analytic manifolds, Ann. of Math. (2) 48 (1947), 659–669.
- [3] P. Griffiths and J. Harris, *Principles of algebraic geometry*, Reprint of the 1978 original, Wiley, New York, 1994.
- [4] K. Maegawa, On Fatou maps into compact complex manifolds, Ergodic Theory Dynam. Systems 25 (2005), no. 5, 1551–1560.