
Principally tame regular sequences associated with the fourth Painlevé
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1. Introduction. The aim of this paper is to

establish some criteria for systems of algebraic

equations admitting finite number of solutions. As

an application, we discuss the construction of

formal solutions to differential equations which

belong to the fourth Painlevé hierarchy with a

large parameter.

The notion of tame regularity for systems of

algebraic equations (or polynomials) was intro-

duced in our previous paper [1], which guarantees

finiteness of the number of solutions if the number

of equations coincides with the dimension of the

base space (cf. Definitions 2.1 and 2.2). In [1],

the highest degree parts of the polynomials which

define the systems play a role. For a sequence of

polynomials, it is tame regular if the sequence

which consists of the highest degree parts of the

polynomials is tame regular [1; Theorem 8]. In this

paper, we show that this is also true in the case

where the degrees of polynomials are measured by

using a weight vector. This generalization provides

us much applicability: We prove the existence and

the finiteness of the leading terms of formal solu-

tions to a general member of the fourth Painlevé

hierarchy with a large parameter. Once the leading

terms are determined, the higher order terms of the

formal solutions can be obtained successively under

the condition that the Jacobi matrix of the system

never vanishes. We give a sufficient condition for

invertibility of the Jacobi matrix.

2. Tame regular sequences and principal-

ly tame regular sequences. Let O denote the

sheaf of rings of holomorphic functions on Cn and

let ûu be a point in Cn. For holomorphic functions

f1; . . . ; fl on an open set U � Cn, we denote

the analytic set fu 2 U ; f1ðuÞ ¼ � � � ¼ flðuÞ ¼ 0g
by V ðf1; . . . ; flÞ and its germ at ûu 2 U by

V ðûu; f1; . . . ; flÞ.
Definition 2.1 [1; Definition 2]. A sequence

ff1; f2; . . . ; flg of elements in O ûu is said

to be tame regular at ûu if for any integer k so

that 0 � k � l� 1 and for any ðkþ 1Þ choice

fl0 ; fl1 ; . . . ; flk of elements in ff1; f2; . . . ; flg, the

element flk is not a zero divisor on O ûu=

ðfl0 ; fl1 ; . . . ; flk�1
Þ. Here ðfl0 ; fl1 ; . . . ; flk�1

Þ designates

the ideal in O ûu generated by fl0 ; fl1 ; . . . ; flk�1
.

If ff1; f2; . . . ; flg is tame regular at ûu, then

dimV ðûu; fl0 ; fl1 ; . . . ; flkÞ ¼ n� k� 1 or V ðûu; fl0 ;
fl1 ; . . . ; flkÞ ¼ ; for any ðkþ 1Þ choice fl0 ; fl1 ; . . . ; flk
of elements in ff1; f2; . . . ; flg [1; Theorem 2].

Let R denote the ring of polynomials of u ¼
ðu1; u2; . . . ; unÞ with complex coefficients.

Definition 2.2 [1; Definition 4]. A sequence

ff1; f2; . . . ; flg of elements in R is said to be

tame regular (in R) if for any k so that

0 � k � l� 1 and any ðkþ 1Þ choice fl0 ; fl1 ; . . . ; flk
of elements in ff1; f2; . . . ; flg, the element flk is

not a zero divisor on R=ðfl0 ; fl1 ; . . . ; flk�1
Þ. Here

ðfl0 ; fl1 ; . . . ; flk�1
Þ denotes the ideal in R generated

by fl0 ; fl1 ; . . . ; flk�1
.

We note that ff1; f2; . . . ; flg is tame regular in

R if and only if ff1; f2; . . . ; flg is tame regular at ûu

for any ûu 2 Cn [1; Theorem 7].

Let w ¼ ðw1; w2; . . . ; wnÞ be an element of Nn.

For a monomial cu� :¼ cu�1

1 u�2

2 � � �u�n
n (c 2 C�), we

denote by degwðcu�Þ the degree of the monomial cu�
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with respect to the weight w. That is, we set

degwðcu�Þ ¼
Xn
i¼1

wi�i:ð1Þ

For a polynomial fðuÞ ¼
P

c�u
� in R, we define

the degree of f with respect to the weight w by

degwðfÞ ¼ max
�

degwðc�u�Þ:ð2Þ

Here we set, as usual, degwð0Þ ¼ �1. If degwðfÞ ¼
m, we set

�wðfÞ ¼
X

degwðc�u�Þ¼m

c�u
�ð3Þ

and call it the principal part of f with respect to the

weight w. We set � ¼ �ð1;1;...;1Þ. A polynomial f 2 R

is said to be w-homogeneous if �wðfÞ ¼ f .

Definition 2.3. A sequence ff1; f2; . . . ; flg
of elements in R is said to be principally tame

regular with respect to the weight w if the sequence

f�wðf1Þ; �wðf2Þ; . . . ; �wðflÞg is tame regular.

Theorem 2.1. Let ff1; f2; . . . ; flg be a se-

quence of polynomials in R. If there exists a weight

vector w ¼ ðw1; . . . ; wnÞ 2 Nn so that the sequence is

principally tame regular with respect to w, then the

sequence is tame regular.

Proof. For the special case where wj ¼ 1 for

all j ¼ 1; 2; . . . ; n, this theorem is nothing but

Theorem 8 in [1]. General case can be reduced to

this special case by using the following

Lemma 2.2. Let f1ðuÞ; . . . ; flðuÞ ðl � nÞ be

elements in R and let

� : Cn
� ! Cn

uð4Þ

be an algebraic mapping defined by polynomials

�ið�Þ ði ¼ 1; . . . ; nÞ of � ¼ ð�1; . . . ; �nÞ. If � is a

proper mapping, then the following two conditions

are equivalent:

(1) The sequence ff1ðuÞ; . . . ; flðuÞg is a tame regular

sequence in C½u1; . . . ; un�.
(2) The sequence f��f1ð�Þ; . . . ;��flð�Þg is a tame

regular sequence in C½�1; . . . ; �n�.
Here we set ��fð�Þ ¼ fð�ð�ÞÞ for f 2 C½u1; . . . ; un�.

Proof. Since � is a proper map between two

affine spaces of the same dimension, � is surjective

and any fiber of it is finite. It is clear that

V ð�ð�0Þ; fl0 ; . . . ; flkÞ ¼ ; is equivalent to V ð�0;
��fl0 ; . . . ;�

�flkÞ ¼ ; (�0 2 Cn; k � l). There exists

a filtration

Cn
� ¼ Vn � Vn�1 � � � � � V0ð5Þ

consisting of locally closed sets in Cn
� so that the

following conditions are satisfied for i ¼ 0; 1; . . . ; n:
(i) Vi is an analytic set of dimension at most i.

(ii) Vi � Vi�1 is a smooth manifold and if it is

not empty, then dimðVi � Vi�1Þ ¼ i.

(iii) �jVi�Vi�1
is a smooth map.

Here we set V�1 ¼ ;. Using this filtration and taking

an irreducible decomposition of V ð�0; ��fl0 ; . . . ;
��flkÞ, we see that

dimðV ð�ð�0Þ; fl0 ; . . . ; flkÞÞð6Þ
¼ dimðV ð�0; ��fl0 ; . . . ;�

�flkÞÞ

holds for any �0 and for k ¼ 0; 1; . . . ; l� 1. Hence it

follows from Theorem 2 of [1] that for any �0 2 Cn,

the following two conditions are equivalent:

(a) ff1; . . . ; flg is tame regular at �ð�0Þ.
(b) f��f1; . . . ;�

�flg is tame regular at �0.

Thus Lemma 1.2 follows from Theorem 7 in [1]. �

We go back to the proof of Theorem 2.1. For

the weight vector w ¼ ðw1; . . . ; wnÞ, we take a

proper mapping

�w : Cn
� ! Cn

uð7Þ

by �wð�1; �2; . . . ; �nÞ ¼ ð�w1

1 ; �w2

2 ; . . . ; �wn
n Þ. Since we

have �ð��
wfiÞ ¼ ��

wð�wðfiÞÞ, combining Lemma 2.2

and Theorem 8 in [1] yields Theorem 2.1. �

3. Tame regular sequences of weighted

homogeneous polynomials with holomorphic

coefficients. In this section, O denotes the sheaf

of holomorphic functions on a complex manifold T .

Let U be an open set in T . We consider the ring

OðUÞ½u1; . . . ; un� of polynomials of u1; . . . ; un with

coefficients in OðUÞ. Let w ¼ ðw1; . . . ; wnÞ 2 Nn be a

weight vector. For a polynomial of u1; . . . ; un with

coefficients in OðUÞ, we can define its degree and

principal part with respect to the weight w in the

same way as for a polynomial with constant

coefficients. A polynomial f 2 OðUÞ½u1; . . . ; un� is

said to be non-constant if degwðfÞ > 0. For given

polynomials f1; . . . ; fl 2 OðUÞ½u1; . . . ; un� and for

t 2 U , we denote by Vtðf1; . . . ; flÞ the algebraic set

in Cn

fu 2 Cn
u; f1ðt; uÞ ¼ � � � ¼ flðt; uÞ ¼ 0g

and by Vtðûu; f1; . . . ; flÞ the germ of Vtðf1; . . . ; flÞ at

ûu 2 Cn
u.

Theorem 3.1. Let ff1; . . . ; flg ðl � nÞ be a

sequence of non-constant w-homogeneous elements

in OðUÞ½u1; . . . ; un�. Then the following two condi-

tions are equivalent:
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(i) For any t 2 U, ff1; . . . ; flg is a tame regular

sequence in R.

(ii) For any t 2 U, dimVtð0; f1; . . . ; flÞ ¼ n� l.

Remark 3.1. If l ¼ n, the second condition

is equivalent to Vtð0; f1; . . . ; flÞ ¼ f0g for any t 2 U.

Proof. Clearly the first statement implies the

second. We prove the converse. For any ðkþ 1Þ
choice fl0 ; . . . ; flk of elements in ff1; . . . ; flg, the

algebraic set

Vtð��
wfl0 ; . . . ;�

�
wflkÞ

is C�-conic. Here �w is defined by (7). Hence we

have

dimVtð��
wfl0 ; . . . ;�

�
wflkÞ

¼ dim Vtð0; ��
wfl0 ; . . . ;�

�
wflkÞ

¼ dim Vtð0; fl0 ; . . . ; flkÞ ¼ n� k� 1:

Combining this with

dimVtð��
wfl0 ; . . . ;�

�
wflkÞ ¼ dimVtðfl0 ; . . . ; flkÞ

and Theorems 2 and 7 in [1], we see that the first

statement holds. �

Theorem 3.2. Let w 2 Nn be a weight vec-

tor. Let ff1; . . . ; flg ðl � nÞ be a sequence of

non-constant elements in OðUÞ½u1; . . . ; un�. Let V ¼
V ðf1; . . . ; flÞ denote the analytic set in U �Cn

fðt; uÞ 2 U �Cn; f1ðt; uÞ ¼ � � � ¼ flðt; uÞ ¼ 0g

and p : U �Cn ! U the canonical projection with

respect to t. If ff1; . . . ; flg is principally tame

regular with respect to w for every t 2 U, then we

have the following

(i) For every fixed t 2 U, ff1; . . . ; flg is a regular

sequence.

(ii) If l ¼ n, the restriction pjV of p to V is a proper

map and each fiber ðpjV Þ
�1ðtÞ is a finite set.

Proof. Taking the map �w, we can assume

w ¼ ð1; 1; . . . ; 1Þ from the beginning.

(i) By Theorem 2.1, ff1; . . . ; flg is a tame

regular sequence. Hence it is sufficient to show

that Vtðf1; . . . ; flÞ is not empty. Let us consider

Vtðf1; . . . ; flÞ in Pn with homogeneous coordinates

ðu; �Þ ¼ ðu1; . . . ; un; �Þ. We set

~ffiðt; u; �Þ ¼ �deg fifiðt; u=�Þ

and

~VVtðf1; . . . ; flÞ ¼ fðu; �Þ 2 Pn; ~ffiðt; u; �Þ ¼ 0 for all ig:

Then it is clear that ~VVtðf1; . . . ; flÞ is not empty.

There exist homogeneous polynomials giðt; u; �Þ

so that for each i, we have

~ffiðt; u; �Þ ¼ �ðfiÞðt; uÞ þ �giðt; u; �Þ:

We set H1 ¼ fðu; �Þ; � ¼ 0g and V1 ¼ H1\
~VVtðf1; . . . ; flÞ. Then we have

V1 ¼ fðu; 0Þ;�ðfiÞðt; uÞ ¼ 0 for all ig:

By the assumption, dimV1 ¼ n� l� 1 if V1 6¼ ;.
Thus there exist n� l hyperplanes H1; . . . ; Hn�l

mutually transversal for which

V1 \H1 \ � � � \Hn�l ¼ ;

holds. On the other hand,

~VVtðf1; . . . ; flÞ \H1 \ � � � \Hn�l 6¼ ;:

Thus we have Vtðf1; . . . ; flÞ 6¼ ;.
(ii) Suppose that pjV is not proper. Then there exist

a point t̂t 2 T and a sequence fðtðkÞ; uðkÞ
1 ; . . . ; u

ðkÞ
n Þg

(k ¼ 1; 2; . . .) in V so that

tðkÞ ! t̂t and
Xn
i¼1

juðkÞ
i j ! 1:

Thus there exists a point ðûu1; . . . ; ûunÞ satisfying
u
ðkÞ
iPn

i¼1 ju
ðkÞ
i j

! ûui and
Xn
i¼1

jûuij ¼ 1:

Clearly ðt̂t; ûuÞ ¼ ðt̂t; ûu1; . . . ; ûunÞ entails

�ðfiÞðt̂t; ûuÞ ¼ 0

for i ¼ 1; . . . ; n. This implies ûu1 ¼ � � � ¼ ûun ¼ 0 and

this is a contradiction. �

4. Tame regular sequences with parame-

ters. Let U be an open set in C and A an open

set in Cd with d 	 n� 1. We assume that U and A

are connected. Let OðU � AÞ denote the ring of

holomorphic functions of ðt; �Þ ¼ ðt; �1; . . . ; �dÞ
defined in U � A. For a sequence ff1; . . . ; fng of

polynomials in u1; . . . ; un with coefficients in

OðU � AÞ, we set

Dðt; �;uÞ ¼ det
@fj

@ui

� �
i¼1;...;n
j¼1;...;n

:ð8Þ

Let In�1 designate the set of subsets consisting of

n� 1 elements of the set f1; 2; . . . ; dg and for

I 2 In�1, we set

MIðt; �;uÞ ¼ det
@fj

@t
;
@fj

@�i

� �
i2I
j¼1;...;n

:ð9Þ

For t 2 U and � 2 A, we denote respectively by Vt;�

and by V� the algebraic set
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fu 2 Cn; f1ðt; �; uÞ ¼ � � � ¼ fnðt; �; uÞ ¼ 0g

and the analytic set

fðt; uÞ 2 U �Cn; f1ðt; �; uÞ ¼ � � � ¼ fnðt; �; uÞ ¼ 0g:

For a fixed �, we set

T� ¼ pðfðt; uÞ 2 V�;Dðt; �;uÞ ¼ 0gÞ;

where p : U �Cn ! U denotes the canonical pro-

jection.

Theorem 4.1. Suppose that for each

ðt; �Þ 2 U � A, the sequence ff1; . . . ; fng is princi-

pally tame regular in C½u1; . . . ; un�, and there exist

a point ðt̂t; �̂�Þ 2 U � A and I 2 In�1 for which

MIðt̂t; �̂�;uÞ 6¼ 0 holds for each u 2 Vt̂t;�̂�. Then T� is

a discrete set for each generic � 2 A. If U ¼ C and

every fj is a polynomial in t, then T� is a finite set.

Proof. Since the proof goes in the same way as

for any d 	 n� 1, we will assume that d ¼ n� 1

and I ¼ f1; 2; . . . ; n� 1g. Let X denote the product

space U � A�Cn. We consider the analytic variety
~VV defined by ffig in X:

~VV ¼ fðt; �; uÞ 2 X; f1 ¼ � � � ¼ fn ¼ 0g:

Let ~pp : X ! U � A denote the canonical projection.

By the assumption, ~ppj ~VV : ~VV ! U � A is proper and

each fiber of it is finite. We set

E ¼ ~ppð ~VV \ fðt; �; uÞ 2 X;Dðt; �; uÞ ¼ 0gÞ:

Since ~ppj ~VV is proper, E is an analytic set in U � A.

Lemma 4.2. Codimension of E in U � A is

greater than or equal to 1.

Proof. Let ~uuð1Þ; . . . ; ~uuðlÞ 2 Cn be the solutions of

f1ðt̂t; �̂�; uÞ ¼ � � � ¼ fnðt̂t; �̂�; uÞ ¼ 0. By the assump-

tion, there exist holomorphic functions g
ðkÞ
i ðuÞ

(i ¼ 1; . . . ; n) in a neighborhood W ðkÞ � Cn
u of ~uuðkÞ

for k ¼ 1; . . . ; l for which ~VV is expressed in the form

g
ðkÞ
1 ðuÞ ¼ t and g

ðkÞ
i ðuÞ ¼ �i�1 (i ¼ 2; . . . ; n) near

ðt̂t; �̂�; ~uuðkÞÞ. Then we have

det
@g

ðkÞ
i

@uj

 !�����
u¼~uuðkÞ

�MIðt̂t; �̂�; ~uuðkÞÞ ¼ Dðt̂t; �̂�; ~uuðkÞÞ:ð10Þ

Let �ðkÞ : W ðkÞ ! Cn
t;� be a mapping defined by

�ðkÞðuÞ ¼ ðgðkÞ1 ðuÞ; . . . ; gðkÞn ðuÞÞ. By the Sard theorem,

the image of the set of all critical points of �ðkÞ has
measure zero. Since �ðkÞ is proper, the image is an

analytic set with codimension greater than or equal

to 1. Thus there exist holomorphic functions

!ðkÞðt; �Þ 6¼ 0 defined near ðt̂t; �̂�Þ for which the image

is contained in the set defined by !ðkÞðt; �Þ ¼ 0. If we

take a point ðt; �Þ sufficiently close to ðt̂t; �̂�Þ so thatQ
1�k�l !

ðkÞðt; �Þ 6¼ 0. Then ðt; �Þ =2 E. Since U � A

is connected, the codimension of E is greater

than or equal to 1. �

For t 2 U, we set Et ¼ f� 2 A; ðt; �Þ 2 Eg and

Eex ¼
T

t2U Et. Then, by Lemma 4.2, Eex is an

analytic set with codimension greater than or equal

to 1. Hence for any ~�� =2 Eex, the set Etp ¼ ft 2
U; ðt; ~��Þ 2 Eg is discrete. If fi are polynomials in t,

the number of irreducible components of ~VV \ fD ¼
0; � ¼ ~��g is finite. Hence Etp is finite. �

5. Construction of formal solutions to

the fourth Painlevé hierarchy with a large

parameter. The fourth Painlevé hierarchy was

introduced by [2] and it was investigated from the

viewpoint of the exact WKB analysis by [4–6]. In

the exact WKB analysis, a large parameter � is

introduced and considering formal solutions that

have expansion in the negative powers of � is a

starting point of the analysis. In these papers,

however, existence of such solutions is assumed.

As an application of the results obtained in the

previous sections, we prove that the assumption is

correct in general.

We employ the formulation given in [5] with

a slight modification. For m ¼ 1; 2; . . ., the m-th

member ðPIVÞm of the fourth Painlevé hierarchy has

the following form:

��1@tXm ¼ 2Ym þ uXm þ g� 2�;

��1Xm@tYm ¼ �vX2
m þ ðYm þ g

2 � �Þ2 � �2

4 ;

(

where �, �, g are arbitrary constants and Xm ¼
Km=2

m þ gt, Ym ¼ Lm=2
m with polynomials Km

and Lm of unknown functions u, v and their

derivatives u0 ¼ @tu and v0 ¼ @tv defined recursively

by

��1@t
Kjþ1

Ljþ1

� �
¼ P

Kj

Lj

� �
;

K0

L0

� �
¼

1

0

� �
:ð11Þ

Here we set

P ¼
��1ðu0 þ u@tÞ � ��2@2

t ��12@t

��1ð2v@t þ v0Þ ��1u@t þ ��2@2
t

 !
:

We look for formal solutions that have expansion in

powers of ��1. We put the expressions

u ¼
X1
k¼0

��kuk and v ¼
X1
k¼0

��kvkð12Þ

into these equations and compare the coefficients of

like powers of ��1. Then we have the following
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system of algebraic equations for the leading terms

u0 and v0:

2Ym;0 þ u0Xm;0 þ g� 2� ¼ 0;

�v0X
2
m;0 þ Ym;0 þ

g

2
� �

� �2

�
�2

4
¼ 0:

8><
>:ð13Þ

Here Xm;0 and Ym;0 are polynomials of u0, v0 defined

by Xm;0 ¼ Km;0=2
m þ gt, Ym;0 ¼ Lm;0=2

m and

@tKjþ1;0 ¼ @tðu0Kj;0 þ 2Lj;0Þ;
@tLjþ1;0 ¼ @tðv0Kj;0Þ þ v0@tKj;0 þ u0@tLj;0

�
ð14Þ

with ðK0;0; L0;0Þ ¼ ð1; 0Þ. This recursive relation can

be solved with ambiguity of integration constants,

which are taken to be zero (see [5] for details).

We set f1 ¼ 2Ym;0 þ u0Xm;0 þ g� 2� and f2 ¼
�v0X

2
m;0 þ ðYm;0 þ g=2� �Þ2 � �2=4. These are pol-

ynomials of u0; v0; t.

Theorem 5.1. For every t 2 C, ff1; f2g is a

principally tame regular sequence in C½u0; v0� with
respect to the weight vector ð1; 2Þ. Hence (13) admits

a finite number of solutions for every t 2 C.

Proof. By the first equation of (14), we have

Kjþ1;0 ¼ u0Kj;0 þ 2Lj;0:ð15Þ

The second equation can be solved under the

integrability condition @Kj;0=@u0 ¼ @Lj;0=@v0:

Ljþ1;0 ¼ 2v0Kj;0 þ u0Lj;0 �
Z v0

0

Kj;0dv:ð16Þ

Here Lj;0ðu0; 0Þ ¼ 0 should be satisfied and the

integrability condition for Kjþ1;0 and Ljþ1;0

requires

v0
@Kj;0

@v0
¼

@Lj;0

@u0
:ð17Þ

Note that the initial conditions ðK0;0; L0;0Þ satisfy

the integrability condition, L0;0 ¼ 0 and (17). Thus

we can solve Kj;0 and Lj;0 successively retaining the

integrability condition. Combining (15) and (16),

we have

Kjþ1;0 ¼ u0Kj;0 þ 2
@

@u0

Z v0

0

Kj;0dv:ð18Þ

This yields the relation

@Kjþ1;0

@u0
¼ ðjþ 1ÞKj;0:ð19Þ

If we write Kj;0 ¼
P

j;k ajkðv0Þuk
0, we have recurrent

relations

ajþ1;kþ1 ¼
jþ 1

kþ 1
aj;k;

ajþ1;0 ¼ 2

Z v0

0

aj;1ðv0Þdv0

8>><
>>:ð20Þ

with initial conditions a0;0 ¼ 1; a1;0 ¼ 0. Using

these relations, we find the following explicit form

for Km;0:

Km;0 ¼
X

0�l�m=2

m!

ðm� 2lÞ! l!2 u
m�2l
0 vl0ð21Þ

and hence

Lm;0 ¼
X

1�l�ðmþ1Þ=2

m! umþ1�2l
0 vl0

ðm� 2lþ 1Þ! l! ðl� 1Þ! :ð22Þ

The sum of all Km;0 has the following explicit form:X1
m¼0

Km;0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2u0 þ ð1� 4zÞu2
0

p ;ð23Þ

where we set z ¼ v0=u
2
0. Comparing this with the

generating function for the Legendre polynomialsX1
m¼0

PmðxÞsm ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2xsþ s2
p ;

we have the following expression of Km;0 in terms of

the m-th Legendre polynomial Pm:

Km;0 ¼ ðu0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z

p
ÞmPm

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z

p
� �

:ð24Þ

Lemma 5.2. If Km;0 ¼ Lm;0 ¼ 0, then u0 ¼
v0 ¼ 0.

Proof. The assumptions imply Kmþ1;0 ¼ 0 be-

cause we have (15). If u0v0 ¼ 0, (21) yields

u0 ¼ v0 ¼ 0. Suppose that u0v0 does not equal zero.

PmðxÞ is an odd (resp. even) polynomial if m is odd

(resp. even). It is well known that all the roots of

PmðxÞ ¼ 0 are simple, contained in the interval

�1 < x < 1 and the roots of PmðxÞ ¼ 0 separate the

roots of Pmþ1ðxÞ ¼ 0. In particular, PmðxÞ has ½m=2�
roots in 0 < x < 1. For a fixed u0 6¼ 0, Km;0 is a

polynomial of z of degree ½m=2� and all of its roots

are contained in z < 0 which separate the roots

of Kmþ1;0 ¼ 0. Thus the system of algebraic

equations Km;0 ¼ Kmþ1;0 ¼ 0 does not have a root

if u0v0 6¼ 0. �

We continue the proof of Theorem 5.1. We

assign the weight 1 for u0 and 2 for v0. That is, we

take a weight vector w ¼ ð1; 2Þ. Since 2m�wðf1Þ ¼
2Lm;0 þ u0Km;0 and 22m�wðf2Þ ¼ �v0K

2
m;0 þ L2

m;0, it

is sufficient to show that

46 T. AOKI and N. HONDA [Vol. 84(A),



2Lm;0 þ u0Km;0 ¼ 0;

�v0K
2
m;0 þ L2

m;0 ¼ 0

�
ð25Þ

implies u0 ¼ v0 ¼ 0. Eliminating Lm;0, we have

u2
0

4
� v0

� �
K2

m;0 ¼ 0:ð26Þ

If v0 ¼ u2
0=4, we can eliminate v0 in the

first equation of (25) and we have u0 ¼ 0. If

Km;0 ¼ 0, we have Lm;0 ¼ 0 and hence u0 ¼ v0 ¼ 0
by Lemma 5.2. By Theorem 3.1, we obtain

Theorem 5.1. �

It follows from the second statement of

Theorem 3.2 that there exist finite numbers of

leading terms u0, v0 which are algebraic functions

ǒf t. To construct higher order terms uj, vj ( j 	 1)
of (12), we have to see the Jacobi matrix

D ¼

@f1

@u0

@f1

@v0
@f2

@u0

@f2

@v0

0
BB@

1
CCAð27Þ

is invertible at any point in Vtðf1; f2Þ for generic t.

Taking I of the theorem so that MI becomes the

Jacobi matrix with respect to variables t and �, we

apply Theorem 4.1. Since

MIðt; �; �; g;u0; v0Þ ¼ det
u0g 0

�2v0Xm;0g � �
2

 !

¼ �
u0�g

2
;

we can take �̂�, �̂� and ĝg so that �̂�ĝg 6¼ 0 and ĝg� 2�̂� 6¼
0 hold. Next we fix t ¼ 0. Then we can see that

MIðt; �̂�; �̂�; ĝg;u0; v0Þ never vanishes for any solution

ðu0; v0Þ 2 V0;�̂�;�̂�;ĝg. Thus D is invertible for generic t

and we can determine uj and vj ( j 	 1) successively

once we fix the leading term ðu0; v0Þ.
Remark 5.1. Our discussion is based on the

formulation of the fourth Painlevé hierarchy given

in [2,3,5]. Another formulation is given in [4] (see

also [6]). In general, the hierarchy includes integra-

tion constants which are chosen to be zero in our

discussion. This specialization does not restrict

applicability of our discussion for the general case

which includes integration constants. The algebraic

equations for the leading terms of the systems given

in [4] are obtained if we replace (15) by

Kjþ1;0 ¼ u0Kj;0 þ 2Lj;0 þ cj

for some integration constant cj. Our discussion can

be applied, however, to prove the existence and the

finiteness of the leading terms of formal solutions to

nonlinear differential equations which belongs to

the generalized fourth Painlevé hierarchies with a

large parameter given in [4,6] because the terms

containing the integration constants never have the

highest weight degree and they do not affect the

principal parts. That is, the principal parts of the

leading terms (with respect to ��1) of Km and Lm of

(3.2) in [4] are exactly the same as those of Km;0 and

Lm;0, respectively and the formulation given in [6]

is equivalent to that in [4]. Moreover Theorem 4.1

also holds for the generalized systems. To see this,

it is enough to verify the condition MI 6¼ 0 for a

parameter with the integration constants being

zero. In fact, for such a parameter the algebraic

equations with respect to the leading terms coincide

with those in this paper. Hence we can construct

formal solutions for the systems given in [4] and [6].
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