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Abstract:

We construct a specific feedback control scheme for a class of linear parabolic

systems such that some nontrivial linear functionals of the state decay faster than the state, while
the state is stabilized. In particular, we raise a new question of pole allocation which is subject to
constraint, and derive the necessary and sufficient condition: an essential extension of the well

known result by W. M. Wonham (1967).
Key words:

1. Introduction. Let H be a separable
Hilbert space equipped with the inner product
(,-) and the norm | -||. We are interested in the
control system with state u(t) € H, t > 0; a finite
number of inputs gx(t), 1 < k< M; and outputs
(u(t),wy) with weights wy € H, 1 < k< N. The
control system is described by the linear differential
equation in H:

——|—Lu-ng Yhi, t>0, u(0) = up,

1
(1) 1<k<N.

with outputs (u, wy),

Here, h; denote actuators, and L a linear closed
operator with dense domain D(L). In stabilization
studies, the inputs gi(t) are designed as a suitable
feedback of the outputs (u,wy) —via dynamic
compensators (see eqn. (2) below for the precise
meaning and setting of the feedback in this
paper). The study of feedback stabilization in this
scheme has a history of two decades (see the
literature, e.g., [2,5,7-9], and [6] for output stabi-
lization), and looks somewhat matured.

Once a decay estimate of ||u(t)|| as t — oo is
achieved, every linear functional of u clearly decays
at least with the same decay rate. We then raise a
question: Can we find a nontrivial linear functional
which decays faster than ||u(t)||? The purpose of the
paper is to construct a specific feedback control
system such that ||u(¢)|| decays exponentially with
the designated decay rate, while some nontrivial
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linear functionals of u(t) — viewed as a kind of
outputs — decay faster than ||u(t)]|.

Throughout the paper, the operator L is
assumed to be self-adjoint such that the resolvent
(A— L)' is compact. A standard example of such
an L is derived from a uniformly elliptic differential
operator in a bounded domain in R™ (see, e.g.,
[1,3]). According to the Hilbert-Schmidt theory
[1,3], there is a set of eigenpairs (\;, @;;) satisfying
the conditions

() o(L) = A} A< <A<
(ii)) (N —L)pij=0,17>1,1<j<m(< o0); and
(iii) the set {¢;;} forms a complete orthonormal

system for H. Thus any uw € H is uniquely
expressed as a Fourier series: u =3, ;uijg;j,
uij = (u, ;). The projector associated with
the eigenvalue A; is denoted by P, or

P,\Iu = Z;n:'l Ui Pij- Set Pn = Z;l:l P)\i.

The minimum eigenvalue A; is assumed to be
negative, so that the system (1) is unstable without
any control gi(¢). Let K be the integer such that
A <0< Agy1- In addition the N\, 1 <4< K are
assumed to be simple, that is, m; = 1. This is the
case, for example, where L is the Sturm-Liouville
operator in the bounded interval of R!. Setting
i = i1, 1 <i< K, we write the Fourier coeffi-
cients (u, ;) = (u, p;1) as u;. The same convension
is applied to the vectors w, n, 7, f, and p below.
Setting N =1 in (1), let us precisely describe our
control system: Let o > 0 be given, and f belong to
D(L). Our control system has state (u(t), v(t)), and
is described as the system of differential equations
in Hx H:
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St Lu=—{v.(a = D)fin+ (v, o),

O r—

dt 7((1—L)f>77+ <Uap>7

+ (u, w)h.

Here, 7, v, and h denote the actuators in H to be
designed; and f the weight generating the func-
tional (u(t), f). The equation for v denotes the
dynamic compensator, the origin of which is found
in [4]. We employ the so-called identity compensa-
tor, and set

(3) B=L+ (-,w)h.

The operators —L and —B generate analytic semi-
groups e '* and e7'Z, t > 0, respectively. Eqn. (2) is
clearly well posed in H x H. The functional (u(¢), f)
is hoped to decay with the decay rate a. The term
(v, (o — L) f)n is introduced for our specific purpose
that (u(t), f) decay faster than ||u(t)||, and does
not appear in regular stabilization schemes.

It is easily seen that w— v satisfies the
equation:

d
ﬁ(u—v)—l—B(u—v):O,

Thus we see that u(t) — v(t) = e B(ug — vy), t > 0.
By assuming the observability conditions:

(4) w; = <w7 %01> 7& Oa
there is an h € Px H such that the estimate
(5) lle™”|| <

t>0.

1<i<K

)

—Ax41t
b)

conste t>0

[2,7-9]). Here the symbol | -|| is
)-norm, too. Thus we see that

holds (see, e.g.,
used for the L(H

[u(t) = v(@)]] <

Thus the state u is asymptotically identified with v.

The main result of the paper is Theorem 1
below. We just outline the proof since it requires a
very long deduction. The complete proof will be
reported elsewhere.

2. Main result.

Theorem 1. (i) Let 0 < < a < Agy1, and
J < K. Suppose that

const e M+ |lug — vgl|, t > 0.
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{ = 07 \ Z Ja
T\ #0, J<i<K.
Then, we can find the vectors f =73, ;fivi €
P;H with Zlgigjﬁni =1;he€ PxkH; and p € PkH
such that the estimate

[u@ + [lo(@)]|

o+t
< conste

<
<

(luoll + flvoll), t=0

holds for every solution (u(t), v(t)) to (2). On the
other hand, (u(t), f) satisfies the decay estimate

(8) [(u(t), f)| < conste ™™, t>0.

The estimate (7) is no longer improved.
(ii) Suppose, in addition, that there is an
integer n > K such that

(9) <P/\,na P)Vw) = <P)\177 P)\,:w> = 07

Then the compensator in (2) is reduced to the
equation in C%, S, = Y 1<icn Mi, with state vi(t) =
P(t). The equation for (u(t), v1(t)) € H x P,H is
described by

i >n.

%‘ + Lu = —(v1, (a = L) f)n + (v1, p)7,
(10) dd—t + Biv = —(v1, (= L) f) Pun

+ (v, p) Puy + (u, wh,

where By denotes the restriction of B onto the S,-
dimensional subspace P,H: By = Blp g = L|p i +
(-, Pyw)h. The estimate

[u(®)] + [0 @)l
"(lluoll + llvioll),
and the decay estimate (8) hold for every solution
(u(t), v1(t)) to (10). The estimate (11) is no longer
improved. Actually there is a solution such that

< const e P t>0

|u(t)|| = conste™,  and
v1(t)|| =conste ™, t=0.
pe >0
Remark 1. In the general case where

m; > 1, 1 <i< K, an extension of Theorem 1 is

possible: We assume N outputs in (1), N =
maXKKK m;.
Remark 2. In the case where J = K, the

vectors p and 7 do not appear in (2) and (10). Thus
the assumption (9) on v does not appear, too.

Sketch of the proof (i) We first derive the
equation for the functional (u, f). In view of the
equation for u in (2), we calculate as
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)+ o L) = (o, 0= L)), )
+ (v, p) (7, )

By the assumptions on the vectors f, n, and v, (u, f)
satisfies the equation

@t )+ ofu ) = (u—v, (@ — L) f).

(12) o

The estimate (8) immediately follows by recalling
that 0 < a < Agy1. The stabilization of the func-
tional (u, f) is thus achieved, while the stabilization
of the state u(t) is not examined yet at this moment.
Let us establish the decay estimate (7). Set

A=L+(,(a—L)f)n, DA)=D(L).

The adjoint of A is then described by A* =L +
(-,m(a— L) f, where D(A*) = D(L). Let A} be the
restriction of A* onto the subspace PxH:

Al =Ap.g=Li+(, Pen)(a—L)f,

where Ly = L|p_p. According to the basis {¢;}
for PxH, we have the following lemma. The proof
is straightforward, and thus omitted.

Lemma 2. The operator A; is identified with
the K x K matrix:

K
i=1

~ =i —A)fn
(13) A= (a —A)f7 )
0 As

where

E=M+(a=-M)fn,

/11 == diag ()\1 )\2 N )\,]),

Ay = diag (A\js1 As2 - Ax),
(14)

="k f),
n=mmn .0,
n= (N1 0742 - NK).

Thus we see that o(A}) = 0(2’{) =o0(E)Ua(Ag).

and

The following theorem discusses on the prob-
lem of finite-dimensional pole assignment, and
constitutes the key to Theorem 1. We note that
the result is essentially different from the well-
known pole assignment theory [10] in the sense
that it is the problem which is subject to constraint.

Theorem 3. Let = bethe J x J matriz given
by (14), and consider its spectrum o(Z) which
is subject to the constraint: Y, ; fin; =1. The
number « belongs to o(Z) regardless of f. For
an arbitrary set {u; 1<i<J—1} of complex
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numbers, there is a vector f such that o(%) =
{a, p1, pa, ..., -1}, if and only if the observability
condition:

is satisfied.

Proof of Theorem 3. The spectrum o(Z)
consists of the solutions to the algebraic equation
on A of order J:

(15)  det ((a— A1) "N\ = A1) — f7) = 0.

After calculation, eqn. (15) is rewritten as (except
for a constant):

0=MA—0a)
Jimi(Ai = A1)
A=) 1 7.
g QLLI( )< i 2;.7 A=A

Thus « belongs to o(Z) regardless of f. The
necessity part is easy. In fact, if one of the
m, --., ns is equal to 0, say n; =0, it is clear that
the above equation has the solution A = )\;, regard-
less of the choice of f.

The proof of the sufficiency requires a very
long deduction. Thus the outline is sketched. The
eigenvalues other than a are the solutions to the
equation of order J — 1:

0= T[ 6=

2<i<J
+ 3 fmi=x) [T 0= )
25 2GS,
i#i

The first polynomial [[,c;c;(A — Ai) is a fixed one
which we cannot manage. The second one of order
J — 2 is denoted as F(A):

F)= Y A"

0<k<T -2
2<i<J 1<k<J -2

The problem is then reduced to the problem of an
arbitrary allocation of the numbers Aj, 0< k<
J — 2. The coefficients aiJk, and consequently A; will
be described in terms of the A;, f;, and m;, 1 <4 < J.
Let q}-], 0 < 7 < J be the numbers defined by

o =1, and

(16) ol = > AA,o A, 1K<
1<ii<io<
<1 <S



22 T. NAMBU

For example, of =3 _,_; A\i. In the above F(X),
the (J — 1) polynomials: A~ + 37,/ ,af A/ ~>7F
have similar algebraic structures. The coefficients
afk, 1 < k< J—2 are expressed as

al = -0 + (M +N),

=03 — ol (A +X) + (OF + A + D),

afy = —03 + o3 (A + X)) — o] (A + XA+ AF)
+ 322N+ M2+ N,

a%](J—z) (1) 20y + (1) o)y + N)

+ (=1 o (A A+ M+ A

—a] NN TN RN

+ RN MY,

)

for each i, 2 <i < J. By analogy with the a;;]k, we
define the number a;.](kl) as follows:

0 J—k—1
FINED STV DPTRRR!
=J |
= (1)l + (=) P, + N
(1)o7 (8 + Mhi + )

=l NN TN N
FOPTEA A A),
Then we can show the relation: a;./](']_l) =0, which
will be applied to the expression of the Aj. After

elementary but tedious calculations, the coefficients
A, 0 < j < J—2 are finally expressed as

DR L ACEP A

2<i<J

= (—1)%%( > Nfm - >\1>

1<i<J

+ (_1)/67101{71 ( Z AP fi — A%)

1<i<J

ool 3 o)

1<i<J
§ k+1 p— k+1
+ /\i f7777 - >‘1 5
1<i<J

or in matrix form

Ay =

[Vol. 84(A),

A ZKig.] Aff?ﬁz

0 o,

Ay ZlgigJ A; fim;

Ay D icicy N i

(17) >
Aj-s :

Aj_ 1 —

/=2 Zlgi@ )‘%] 1fi77i
-\
0'1‘])\1 — )\%

+ —o A + oA =\

Z%I:Q(_l)'liiaii)‘?l

where X' denotes the nonsingular matrix described

1 0 0 0
—of 00
oy o] 10
J-3
(1)o7 10

J—2
(-1) 0§—2

Thus the coefficients A, 0 < k < J — 2 are arbitra-
rily assigned, if and only if the quantities Bj =
Soicicy Mfim;, 1<k<J—1 are freely assigned
under the constraint: ) . ;fif; =1. In other
words, the Aj are freely assigned, if and only if
the equation:

(—1)‘]730§_3 s —oi 1

11 1 i, 1
A1 Ao . AJ f2ﬁ2 B
D D ¢ S b L | = | Be

PYEIND Vot NV N\ oy By

is solved for any given set of numbers {B;, Bs, ...,
Bj_1}. However, the equation has a unique solution
{flﬁlu f2ﬁ27 ) f]ﬁ]} Since n; 7& 0,1<i< Jv we
can determine f;, 1 < i < J so that the solutions to
F(\) =0 are freely assigned. 0

According to Theorem 3, we choose an f such
that min ¢(Z) > 3, and that the eigenvalues are
different from each other: One of the elements of
o(&) is, of course, a. Let IT be a nonsingular matrix
such that
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II7'E0T = diag (a1 ay ... ay) = A,
where oy = «, and «; > 3. For each );, the vector
(¢1) with
€; . _
Yi=N—5) (a—A)fne;,

J+1) i) K)
e ="00 ...1...0),

is an eigenvector. Then the nonsingular matrix

J+1<i< K

I Yy Yy .. Yk
0...0 1 0 0
s_|0.0 0o 1 0
0...0 0 0 1

diagonalizes A W' A1 = diag (A Ay).
Let us introduce the operator F' defined by
F=A- <" /)>’Y
=L+ ((a=L)f)n={,p.
The restriction of the adjoint F* onto the subspace
PxH: F*|p = A} — (-, Pgv)p is then identified
with the matrix

A 0
— ( ) _Q*lp* 7*w7

(18)

0 A

where p* ='(p1p2 ... px), and v = (71 Y2 ... V)
By the assumption (6), it is clear that

YV =0 ... 0941 .. 7x) =7"
By decomposing ¥ p* as (:; ), ri: J x 1, and ro:
(K — J) x 1, the last matrix is rewritten as
(40w
0 A
A =iy oK)
B (0 Ay — ro(Yr41 - - ”YK))
Thus we see that
U(F*|PKH) = o (A7 — (-, Pxv)p)
={a1, az, ..., s} Uc(Ads — ra(vs1 .. VK))-
By the observability assumption: v; #0, J+ 1<
1 < K, we find a suitable vector ro such that

min O'(AQ —ro(Vys1 --- ’yK)) = 0.

It is easy to see that 3 is also the eigenvalue of F*,

and thus 0 = 3 is the eigenvalue of F.
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The equation for w in (2) is rewritten as

du
5 Tfu= (u—=v,(a—L)f)n—(u—v,p)7,

or

u(t) = e Ty

+ [ I tuls) = o(0), (0 = Dy ds

- / I () — u(s), pyds,

0

from which we establish the estimate:

|u(t)|| < conste™™, t>0;

a similar estimate for v(t); and finally the decay
estimate (7). This estimate cannot be improved.
In fact, let £ be an eigenvector of F' for §:

(8- F)E=0.

By setting wy=1wvy =¢, the pair (u(t), v(t)) =
(e7P¢, eP¢) is actually the solution to eqn. (2),
and thus the decay estimate (7) is no longer
improved.

(ii) We begin with the following proposition.

Proposition 4. Letp and q be vectors in H,
and let p =3, ;pijpi; and ¢ =), ; qijpij- The func-
tion

(" Qup, Qna),
1s identically equal to 0, if and only if

t>0

m;

S =0, or
=1

(Pxp, Prq) =0,
The idea of the proof is to apply the Laplace
transform to the above function and then use
analytic continuation of the transformed meromor-
phic function, but the proof is omitted.
We go back to the equation for v in (2):

(19)

> n.

%4_ Lv+ (v,w)h = —{v,(a = L) f)n

+ (v, )y + (u, w)h.

Recalling that fe€ P;H, p€ PxH, and h € PxH,
we divide v into the direct sum:

v=wv1+ve, v €FPH, ve€Q,H, n>=K.

The differential equation for v is then written
as the coupling system of equations for v; and wvs:
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dv
7; + L’Ul + <’U] —|—’U2,’Uj>h

= —<U17 (a — L)f>PrL77

+ (v1, p) Py + (u, w)h,
(20) dvs
— + Lvy = —(v1, (o = L) f)Qun

+ (v1, p)QuY-

Note that the evolution of vy in (20) does not
generally disappear, and seriously affects v;. By the
second equation, we see that

U2 (t) = e_tLQn'UO

- / e 90, (s), (0 — L) f)Quiy ds

t
~(t=9)L n d )
+/O e (v1(s), p)Quy ds
and thus
<’U2 (t)v an>
= <67tLQnUOa an>

- / (eI Qur, Quw (i (5), (o — L) f)ds

t
+ / <ei<tis)LQn7a an> <U1 (3)7 P> ds.
0

By assumption (9) and Proposition 4 with p =17
or =~ and ¢ = w, the second and the third terms
disappear. Thus, we see that

<U2 (t)a an> = <€_tLan07 an);
We choose the initial data vy such that
<P)\11}0, P,\zw) = 0,

t>0.

1> M.
Then, by Proposition 4 again, we see that

<’U2 (t)v an> =0.

In the equation for v; in (20), the term (vq(t),w)
then does not appear.

We come to the conclusion: As long as wvy
satisfies (P vg, P\,w) =0, i>mn, the new state
(u(t), v1(t)) satisfies the system of differential
equations in H x P, H:

t>0.

du
o+ Lu=—(vi, (@ = L) fyn + (v, p)7,
d'U] I P h

(1) g Lt (o P

= —(v1, (@ = L) f)Pun
+ <vlap>Pn’7 + <u7 w>h
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Eqn. (21), which is nothing but (10), is clearly well
posed in H x P,H, and the decay estimate (11)
holds.

To show that (11) is the best possible estimate,
we reconsider the eigenvector £ for the eigenvalue 3
of F. Actually we obtain—via Proposition 4

Lemma 5. The eigenvector £ for the eigen-
value 5 € o(F') satisfies the relation:

<P)\¢§a P)\Lw> = 0, 7> Mn.

As we have already seen, the pair: (u(t),v(t)) =
(e Pte, e P€) is a solution to (2), and v(0) = vy = &.
Thus, (u(t), vi(t)) = (e 7€, e 7€) is a solution
to (21), and (11) is the best possible decay
estimate.

This finishes the proof of Theorem 1. ([
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