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Abstract: We construct a specific feedback control scheme for a class of linear parabolic

systems such that some nontrivial linear functionals of the state decay faster than the state, while

the state is stabilized. In particular, we raise a new question of pole allocation which is subject to

constraint, and derive the necessary and sufficient condition: an essential extension of the well

known result by W. M. Wonham (1967).
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1. Introduction. Let H be a separable

Hilbert space equipped with the inner product

h�; �i and the norm k � k. We are interested in the

control system with state uðtÞ 2 H, t > 0; a finite

number of inputs gkðtÞ, 1 6 k 6M; and outputs

huðtÞ; wki with weights wk 2 H, 1 6 k 6 N . The

control system is described by the linear differential

equation in H:

du

dt
þ Lu ¼

XM
k¼1

gkðtÞhk; t > 0; uð0Þ ¼ u0;

with outputs hu; wki; 1 6 k 6 N:
ð1Þ

Here, hk denote actuators, and L a linear closed

operator with dense domain DðLÞ. In stabilization

studies, the inputs gkðtÞ are designed as a suitable

feedback of the outputs hu; wki –via dynamic

compensators (see eqn. (2) below for the precise

meaning and setting of the feedback in this

paper). The study of feedback stabilization in this

scheme has a history of two decades (see the

literature, e.g., [2,5,7–9], and [6] for output stabi-

lization), and looks somewhat matured.

Once a decay estimate of kuðtÞk as t!1 is

achieved, every linear functional of u clearly decays

at least with the same decay rate. We then raise a

question: Can we find a nontrivial linear functional

which decays faster than kuðtÞk? The purpose of the

paper is to construct a specific feedback control

system such that kuðtÞk decays exponentially with

the designated decay rate, while some nontrivial

linear functionals of uðtÞ — viewed as a kind of

outputs — decay faster than kuðtÞk.
Throughout the paper, the operator L is

assumed to be self-adjoint such that the resolvent

ð�� LÞ�1 is compact. A standard example of such

an L is derived from a uniformly elliptic differential

operator in a bounded domain in Rm (see, e.g.,

[1,3]). According to the Hilbert-Schmidt theory

[1,3], there is a set of eigenpairs ð�i; ’ijÞ satisfying
the conditions

(i) �ðLÞ ¼ f�ig1i¼1; �1 < � � � < �i < � � � ! 1;

(ii) ð�i � LÞ’ij ¼ 0; i > 1; 1 6 j 6 mið<1Þ; and
(iii) the set f’ijg forms a complete orthonormal

system for H. Thus any u 2 H is uniquely

expressed as a Fourier series: u ¼
P

i;j uij’ij,

uij ¼ hu; ’iji. The projector associated with

the eigenvalue �i is denoted by P�i , or

P�iu ¼
Pmi

j¼1 uij’ij. Set Pn ¼
Pn

i¼1 P�i .
The minimum eigenvalue �1 is assumed to be

negative, so that the system (1) is unstable without

any control gkðtÞ. Let K be the integer such that

�K 6 0 < �Kþ1. In addition the �i, 1 6 i 6 K are

assumed to be simple, that is, mi ¼ 1. This is the

case, for example, where L is the Sturm-Liouville

operator in the bounded interval of R1. Setting

’i ¼ ’i1, 1 6 i 6 K, we write the Fourier coeffi-

cients hu; ’ii ¼ hu; ’i1i as ui. The same convension

is applied to the vectors w, �, �, f , and � below.

Setting N ¼ 1 in (1), let us precisely describe our

control system: Let � > 0 be given, and f belong to

DðLÞ. Our control system has state ðuðtÞ; vðtÞÞ, and
is described as the system of differential equations

in H �H:
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du

dt
þ Lu ¼ �hv; ð�� LÞfi� þ hv; �i�;

dv

dt
þ Bv ¼ �hv; ð�� LÞfi� þ hv; �i�ð2Þ

þ hu; wih:

Here, �, �, and h denote the actuators in H to be

designed; and f the weight generating the func-

tional huðtÞ; fi. The equation for v denotes the

dynamic compensator, the origin of which is found

in [4]. We employ the so-called identity compensa-

tor, and set

B ¼ Lþ h�; wih:ð3Þ

The operators �L and �B generate analytic semi-

groups e�tL and e�tB, t > 0, respectively. Eqn. (2) is
clearly well posed in H �H. The functional huðtÞ; fi
is hoped to decay with the decay rate �. The term

hv; ð�� LÞfi� is introduced for our specific purpose

that huðtÞ; fi decay faster than kuðtÞk, and does

not appear in regular stabilization schemes.

It is easily seen that u� v satisfies the

equation:

d

dt
ðu� vÞ þBðu� vÞ ¼ 0; t > 0:

Thus we see that uðtÞ � vðtÞ ¼ e�tBðu0 � v0Þ, t > 0.
By assuming the observability conditions:

wi ¼ hw; ’ii 6¼ 0; 1 6 i 6 K;ð4Þ

there is an h 2 PKH such that the estimate

ke�tBk 6 const e��Kþ1t; t > 0ð5Þ

holds (see, e.g., [2,7–9]). Here the symbol k � k is

used for the LðHÞ-norm, too. Thus we see that

kuðtÞ � vðtÞk 6 const e��Kþ1tku0 � v0k; t > 0:

Thus the state u is asymptotically identified with v.

The main result of the paper is Theorem 1

below. We just outline the proof since it requires a

very long deduction. The complete proof will be

reported elsewhere.

2. Main result.

Theorem 1. (i) Let 0 < � < � < �Kþ1, and

J 6 K. Suppose that

wi 6¼ 0; 1 6 i 6 K;ð6Þ
�i 6¼ 0; 1 6 i 6 J; and

�i
¼ 0; 1 6 i 6 J;

6¼ 0; J < i 6 K.

�
Then, we can find the vectors f ¼

P
16i6J fi’i 2

PJH with
P

16i6J fi �i ¼ 1; h 2 PKH; and � 2 PKH
such that the estimate

kuðtÞk þ kvðtÞk
6 const e��tðku0k þ kv0kÞ; t > 0

ð7Þ

holds for every solution ðuðtÞ; vðtÞÞ to (2). On the

other hand, huðtÞ; fi satisfies the decay estimate

jhuðtÞ; fij 6 const e��t; t > 0:ð8Þ

The estimate (7) is no longer improved.

(ii) Suppose, in addition, that there is an

integer n > K such that

hP�i�; P�iwi ¼ hP�i�; P�iwi ¼ 0; i > n:ð9Þ

Then the compensator in (2) is reduced to the

equation in CSn , Sn ¼
P

16i6n mi, with state v1ðtÞ ¼
PnvðtÞ. The equation for ðuðtÞ; v1ðtÞÞ 2 H � PnH is

described by

du

dt
þ Lu ¼ �hv1; ð�� LÞfi� þ hv1; �i�;

dv1

dt
þB1v ¼ �hv1; ð�� LÞfiPn�ð10Þ

þ hv1; �iPn� þ hu; wih;

where B1 denotes the restriction of B onto the Sn-

dimensional subspace PnH: B1 ¼ BjPnH ¼ LjPnH þ
h�; Pnwih. The estimate

kuðtÞk þ kv1ðtÞk
6 const e��tðku0k þ kv10kÞ; t > 0

ð11Þ

and the decay estimate (8) hold for every solution

ðuðtÞ; v1ðtÞÞ to (10). The estimate (11) is no longer

improved. Actually there is a solution such that

kuðtÞk ¼ const e��t; and

kv1ðtÞk ¼ const e��t; t > 0:

Remark 1. In the general case where

mi > 1, 1 6 i 6 K, an extension of Theorem 1 is

possible: We assume N outputs in (1), N ¼
max16i6K mi.

Remark 2. In the case where J ¼ K, the

vectors � and � do not appear in (2) and (10). Thus

the assumption (9) on � does not appear, too.

Sketch of the proof (i) We first derive the

equation for the functional hu; fi. In view of the

equation for u in (2), we calculate as
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d

dt
hu; fi þ hu; Lfi ¼ �hv; ð�� LÞfih�; fi

þ hv; �ih�; fi:

By the assumptions on the vectors f , �, and �, hu; fi
satisfies the equation

d

dt
hu; fi þ �hu; fi ¼ hu� v; ð�� LÞfi:ð12Þ

The estimate (8) immediately follows by recalling

that 0 < � < �Kþ1. The stabilization of the func-

tional hu; fi is thus achieved, while the stabilization
of the state uðtÞ is not examined yet at this moment.

Let us establish the decay estimate (7). Set

A ¼ Lþ h�; ð�� LÞfi�; DðAÞ ¼ DðLÞ:

The adjoint of A is then described by A� ¼ Lþ
h�; �ið�� LÞf , where DðA�Þ ¼ DðLÞ. Let A�1 be the

restriction of A� onto the subspace PKH:

A�1 ¼ A�jPKH ¼ L1 þ h�; PK�ið�� LÞf;

where L1 ¼ LjPKH . According to the basis f’igKi¼1
for PKH, we have the following lemma. The proof

is straightforward, and thus omitted.

Lemma 2. The operator A�1 is identified with

the K �K matrix:

bAA�1 ¼ � ð�� 	1Þf ~��

0 	2

 !
;ð13Þ

where

� ¼ 	1 þ ð�� 	1Þf �;
	1 ¼ diag ð�1 �2 . . . �JÞ;
	2 ¼ diag ð�Jþ1 �Jþ2 . . . �KÞ;
f ¼ tðf1 f2 . . . fJÞ;
� ¼ ð�1 �2 . . . �JÞ; and

~�� ¼ ð�Jþ1 �Jþ2 . . . �KÞ:

ð14Þ

Thus we see that �ðA�1Þ ¼ �ð bAA�1Þ ¼ �ð�Þ [ �ð	2Þ.

The following theorem discusses on the prob-

lem of finite-dimensional pole assignment, and

constitutes the key to Theorem 1. We note that

the result is essentially different from the well-

known pole assignment theory [10] in the sense

that it is the problem which is subject to constraint.

Theorem 3. Let � be the J � J matrix given

by (14), and consider its spectrum �ð�Þ which

is subject to the constraint :
P

16i6J fi �i ¼ 1. The

number � belongs to �ð�Þ regardless of f . For

an arbitrary set f
i; 1 6 i 6 J � 1g of complex

numbers, there is a vector f such that �ð�Þ ¼
f�; 
1; 
2; . . . ; 
J�1g, if and only if the observability

condition:

�i 6¼ 0; 1 6 i 6 J

is satisfied.

Proof of Theorem 3. The spectrum �ð�Þ
consists of the solutions to the algebraic equation

on � of order J:

det
�
ð�� 	1Þ�1ð�� 	1Þ � f �

�
¼ 0:ð15Þ

After calculation, eqn. (15) is rewritten as (except

for a constant):

0 ¼ ð�� �Þ

�
Y

26i6J

ð�� �iÞ 1þ
X
26i6J

fi �ið�i � �1Þ
�� �i

 !
:

Thus � belongs to �ð�Þ regardless of f . The

necessity part is easy. In fact, if one of the

�1; . . . ; �J is equal to 0, say �i ¼ 0, it is clear that

the above equation has the solution � ¼ �i, regard-
less of the choice of f .

The proof of the sufficiency requires a very

long deduction. Thus the outline is sketched. The

eigenvalues other than � are the solutions to the

equation of order J � 1:

0 ¼
Y

26i6J

ð�� �iÞ

þ
X
26i6J

fi �ið�i � �1Þ
Y

26j6J;
j 6¼i

ð�� �jÞ:

The first polynomial
Q

26i6Jð�� �iÞ is a fixed one

which we cannot manage. The second one of order

J � 2 is denoted as F ð�Þ:
F ð�Þ ¼

X
06k6J�2

Ak�
J�2�k

¼
X
26i6J

fi�ið�i � �1Þ �J�2 þ
X

16k6J�2
aJik�

J�2�k

 !
:

The problem is then reduced to the problem of an

arbitrary allocation of the numbers Ak, 0 6 k 6

J � 2. The coefficients aJik, and consequently Ak will

be described in terms of the �i, fi, and �i, 1 6 i 6 J.

Let �Jj , 0 6 j 6 J be the numbers defined by

�J0 ¼ 1; and

�Jj ¼
X

16i1<i2<
���<ij6J

�i1�i2 � � ��ij ; 1 6 j 6 J:ð16Þ
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For example, �J1 ¼
P

16i6J �i. In the above F ð�Þ,
the ðJ � 1Þ polynomials: �J�2 þ

P
16k6J�2 a

J
ik�

J�2�k

have similar algebraic structures. The coefficients

aJik, 1 6 k 6 J � 2 are expressed as

aJi1 ¼ ��J1 þ ð�1 þ �iÞ;
aJi2 ¼ �J2 � �J1 ð�1 þ �iÞ þ ð�21 þ �1�i þ �2i Þ;
aJi3 ¼ ��J3 þ �J2 ð�1 þ �iÞ � �J1 ð�21 þ �1�i þ �2i Þ

þ ð�31 þ �21�i þ �1�2i þ �3i Þ;
. . . . . .

aJiðJ�2Þ ¼ ð�1Þ
J�2�JJ�2 þ ð�1Þ

J�3�JJ�3ð�1 þ �iÞ

þ ð�1ÞJ�4�JJ�4ð�21 þ �1�i þ �2i Þ
þ � � �
� �J1 ð�J�31 þ �J�41 �i þ � � � þ �J�3i Þ
þ ð�J�21 þ �J�31 �i þ � � � þ �J�2i Þ;

for each i, 2 6 i 6 J . By analogy with the aJik, we

define the number aJiðJ�1Þ as follows:

aJiðJ�1Þ ¼
X0
k¼J�1

ð�1Þk�Jk
XJ�k�1
l¼0

�J�k�l�11 �li

¼ ð�1ÞJ�1�JJ�1 þ ð�1Þ
J�2�JJ�2ð�1 þ �iÞ

þ ð�1ÞJ�3�JJ�3ð�21 þ �1�i þ �2i Þ
þ � � �
� �J1 ð�J�21 þ �J�31 �i þ � � � þ �J�2i Þ
þ ð�J�11 þ �J�21 �i þ � � � þ �J�1i Þ:

Then we can show the relation: aJiðJ�1Þ ¼ 0, which

will be applied to the expression of the Ak. After

elementary but tedious calculations, the coefficients

Ak, 0 6 j 6 J � 2 are finally expressed as

Ak ¼
X
26i6J

fi�ið�i � �1ÞaJik

¼ ð�1Þk�Jk
X
16i6J

�ifi�i � �1

 !

þ ð�1Þk�1�Jk�1
X
16i6J

�2i fi�i � �21

 !

þ � � � � �J1
X
16i6J

�ki fi�i � �k1

 !

þ
X
16i6J

�kþ1i fi�i � �kþ11

 !
;

or in matrix form

A0

A1

A2

..

.

AJ�3

AJ�2

0BBBBBBBBB@

1CCCCCCCCCA
¼ �

P
16i6J �ifi�iP
16i6J �

2
i fi�iP

16i6J �
3
i fi�i

..

.

..

.P
16i6J �

J�1
i fi�i

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
ð17Þ

þ

��1
�J1�1 � �21

��J2�1 þ �J1�21 � �31
..
.PJ

i¼2ð�1Þ
J�i�JJ�i�

i�1
1

0BBBBBBBB@

1CCCCCCCCA
;

where � denotes the nonsingular matrix described

by

1 0 0 0 . . . 0 0

��J1 1 0 0 . . . 0 0

�J2 ��J1 1 0 . . . 0 0

..

. ..
. ..

. ..
.

. . . ..
. ..

.

ð�1ÞJ�3�JJ�3 1 0

ð�1ÞJ�2�JJ�2 ð�1ÞJ�3�JJ�3 . . . ��J1 1

0BBBBBBBBBBB@

1CCCCCCCCCCCA
:

Thus the coefficients Ak, 0 6 k 6 J � 2 are arbitra-

rily assigned, if and only if the quantities Bk ¼P
16i6J �

k
i fi�i, 1 6 k 6 J � 1 are freely assigned

under the constraint:
P

16i6J fi�i ¼ 1. In other

words, the Ak are freely assigned, if and only if

the equation:

1 1 . . . 1

�1 �2 . . . �J

�21 �22 . . . �2J

..

. ..
. . .

. ..
.

�J�11 �J�12 . . . �J�1J

0BBBBBBB@

1CCCCCCCA

f1�1

f2�2

f3�3

..

.

fJ�J

0BBBBBBB@

1CCCCCCCA ¼
1

B1

B2

..

.

BJ�1

0BBBBBBB@

1CCCCCCCA
is solved for any given set of numbers fB1; B2; . . . ;

BJ�1g. However, the equation has a unique solution

ff1�1; f2�2; . . . ; fJ�Jg. Since �i 6¼ 0, 1 6 i 6 J, we

can determine fi, 1 6 i 6 J so that the solutions to

F ð�Þ ¼ 0 are freely assigned.

According to Theorem 3, we choose an f such

that min �ð�Þ > �, and that the eigenvalues are

different from each other: One of the elements of

�ð�Þ is, of course, �. Let � be a nonsingular matrix

such that
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��1�� ¼ diag ð�1 �2 . . . �JÞ ¼ A;

where �1 ¼ �, and �i > �. For each �i, the vector
 i
ei

� �
with

 i ¼ ð�i ��Þ�1ð�� 	1Þf ~�� ei;

ei ¼ tð 0
Jþ1Þ

. . . 1
iÞ
. . . 0

KÞ
Þ; J þ 1 6 i 6 K

is an eigenvector. Then the nonsingular matrix

 ¼

�  Jþ1  Jþ2 . . .  K

0 . . . 0 1 0 . . . 0

0 . . . 0 0 1 . . . 0

..

. ..
. ..

. . .
. ..

.

0 . . . 0 0 0 . . . 1

0BBBBBBB@

1CCCCCCCA
diagonalizes bAA�1: �1 bAA�1 ¼ diag ðA 	2Þ.

Let us introduce the operator F defined by

F ¼ A� h�; �i�
¼ Lþ h�; ð�� LÞfi� � h�; �i�:

ð18Þ

The restriction of the adjoint F � onto the subspace

PKH: F �jPKH ¼ A
�
1 � h�; PK�i� is then identified

with the matrixbAA�1 � ����  ! �1ð bAA�1 � ����Þ

¼
A 0

0 	2

� �
� �1�� ��;

where �� ¼ tð�1 �2 . . . �KÞ, and �� ¼ ð�1 �2 . . . �KÞ.
By the assumption (6), it is clear that

�� ¼ ð0 . . . 0 �Jþ1 . . . �KÞ ¼ ��:

By decomposing �1�� as
r1

r2

� �
, r1: J � 1, and r2:

ðK � JÞ � 1, the last matrix is rewritten as

A 0

0 	2

� �
� �1�� ��

¼
A �r1ð�Jþ1 . . . �KÞ
0 	2 � r2ð�Jþ1 . . . �KÞ

� �
:

Thus we see that

� F �jPKH
� �

¼ �
�
A�1 � h�; PK�i�

�
¼ f�1; �2; . . . ; �Jg [ �

�
	2 � r2ð�Jþ1 . . . �KÞ

�
:

By the observability assumption: �i 6¼ 0, J þ 1 6

i 6 K, we find a suitable vector r2 such that

min �
�
	2 � r2ð�Jþ1 . . . �KÞ

�
¼ �:

It is easy to see that � is also the eigenvalue of F �,
and thus � ¼ � is the eigenvalue of F .

The equation for u in (2) is rewritten as

du

dt
þ Fu ¼ hu� v; ð�� LÞfi� � hu� v; �i�;

or

uðtÞ ¼ e�tF u0

þ
Z t

0

e�ðt�sÞF huðsÞ � vðsÞ; ð�� LÞfi� ds

�
Z t

0

e�ðt�sÞF huðsÞ � vðsÞ; �i� ds;

from which we establish the estimate:

kuðtÞk 6 const e��t; t > 0;

a similar estimate for vðtÞ; and finally the decay

estimate (7). This estimate cannot be improved.

In fact, let � be an eigenvector of F for �:

ð� � F Þ� ¼ 0:

By setting u0 ¼ v0 ¼ �, the pair ðuðtÞ; vðtÞÞ ¼
ðe��t�; e��t�Þ is actually the solution to eqn. (2),

and thus the decay estimate (7) is no longer

improved.

(ii) We begin with the following proposition.

Proposition 4. Let p and q be vectors in H,

and let p ¼
P

i;j pij’ij and q ¼
P

i;j qij’ij. The func-

tion

he�tLQnp;Qnqi; t > 0

is identically equal to 0, if and only ifXmi

l¼1
pil qil ¼ 0; or

hP�ip; P�iqi ¼ 0; i > n:

ð19Þ

The idea of the proof is to apply the Laplace

transform to the above function and then use

analytic continuation of the transformed meromor-

phic function, but the proof is omitted.

We go back to the equation for v in (2):

dv

dt
þ Lvþ hv; wih ¼ �hv; ð�� LÞfi�

þ hv; �i� þ hu;wih:

Recalling that f 2 PJH, � 2 PKH, and h 2 PKH,

we divide v into the direct sum:

v ¼ v1 þ v2; v1 2 PnH; v2 2 QnH; n > K:

The differential equation for v is then written

as the coupling system of equations for v1 and v2:
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dv1

dt
þ Lv1 þ hv1 þ v2; wih

¼ �hv1; ð�� LÞfiPn�
þ hv1; �iPn� þ hu; wih;

dv2

dt
þ Lv2 ¼ �hv1; ð�� LÞfiQn�

þ hv1; �iQn�:

ð20Þ

Note that the evolution of v2 in (20) does not

generally disappear, and seriously affects v1. By the

second equation, we see that

v2ðtÞ ¼ e�tLQnv0

�
Z t

0

e�ðt�sÞLhv1ðsÞ; ð�� LÞfiQn� ds

þ
Z t

0

e�ðt�sÞLhv1ðsÞ; �iQn� ds;

and thus

hv2ðtÞ; Qnwi
¼ he�tLQnv0; Qnwi

�
Z t

0

he�ðt�sÞLQn�;Qnwihv1ðsÞ; ð�� LÞfids

þ
Z t

0

he�ðt�sÞLQn�;Qnwihv1ðsÞ; �i ds:

By assumption (9) and Proposition 4 with p ¼ �
or ¼ � and q ¼ w, the second and the third terms

disappear. Thus, we see that

hv2ðtÞ; Qnwi ¼ he�tLQnv0; Qnwi; t > 0:

We choose the initial data v0 such that

hP�iv0; P�iwi ¼ 0; i > n:

Then, by Proposition 4 again, we see that

hv2ðtÞ; Qnwi ¼ 0: t > 0:

In the equation for v1 in (20), the term hv2ðtÞ; wi
then does not appear.

We come to the conclusion: As long as v0
satisfies hP�iv0; P�iwi ¼ 0, i > n, the new state

ðuðtÞ; v1ðtÞÞ satisfies the system of differential

equations in H � PnH:

du

dt
þ Lu ¼ �hv1; ð�� LÞfi� þ hv1; �i�;

dv1

dt
þ Lv1 þ hv1; Pnwih

¼ �hv1; ð�� LÞfiPn�
þ hv1; �iPn� þ hu; wih:

ð21Þ

Eqn. (21), which is nothing but (10), is clearly well

posed in H � PnH, and the decay estimate (11)

holds.

To show that (11) is the best possible estimate,

we reconsider the eigenvector � for the eigenvalue �

of F . Actually we obtain—via Proposition 4

Lemma 5. The eigenvector � for the eigen-

value � 2 �ðF Þ satisfies the relation:

hP�i�; P�iwi ¼ 0; i > n:

As we have already seen, the pair: ðuðtÞ; vðtÞÞ ¼
ðe��t�; e��t�Þ is a solution to (2), and vð0Þ ¼ v0 ¼ �.
Thus, ðuðtÞ; v1ðtÞÞ ¼ ðe��t�; e��t�1Þ is a solution

to (21), and (11) is the best possible decay

estimate.

This finishes the proof of Theorem 1. �
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