Divisibility of class numbers of imaginary quadratic fields whose discriminant has only two prime factors

By Dongho ByEon*) and Shinae LEE**)
(Communicated by Shigefumi Mori, M.J.A., Dec. 12, 2007)

Abstract

Let $g \geq 2$ and $n \geq 1$ be integers. In this paper, we shall show that there are infinitely many imaginary quadratic fields whose class number is divisible by $2 g$ and whose discriminant has only two prime divisors. As a corollary, we shall show that there are infinitely many imaginary quadratic fields whose 2-class group is a cyclic group of order divisible by 2^{n}.

Key words: Class number; imaginary quadratic fields.

1. Introduction and statement of results. Let $K=\mathbf{Q}(\sqrt{D})$ be the quadratic field with discriminant D, and $C l(D)$ and $h(D)$ be the ideal class group of K and its class number respectively. The ideal class group of K in the narrow sense and its class number are denoted by $C L^{+}(D)$ and $h^{+}(D)$ respectively. We have $h^{+}(D)=2 h(D)$ if $D>0$ and the fundamental unit ϵ_{D} has the norm 1, and $h^{+}(D)=h(D)$ otherwise. If we assume that $|D|$ has just two distinct prime divisors then by the genus theory of Gauss, the 2-class group of K (that is, the Sylow 2-subgroup of $C L^{+}(D)$) is cyclic. After Rédei and Reichardt [12-14], many authors [2,3,6-10,16] investigated the conditions for $h^{+}(D)$ to be divisible by 2^{n} when the 2 -class group of K is cyclic. However the criterion for $h^{+}(D)$ to be divisible by 2^{n} is known for only $n \leq 4$ and the existence of quadratic fields with arbitrarily large cyclic 2 -class groups is not known yet. In this direction, we shall show the following result.

Corollary 1.1. Let $n \geq 1$ be an integer. There are infinitely many imaginary quadratic fields whose 2-class group is a cyclic group of order divisible by 2^{n}.

On the other hand, Belabas and Fouvry [4] proved that there are infinitely many primes p such that the class number of the real quadratic field $\mathbf{Q}(\sqrt{p})$ is not divisible by 3 . It seems interesting to consider similar question for the divisibility of class numbers of quadratic fields whose discriminant has a small number of prime divisors. In this direction,

[^0]we shall show the following theorem.
Theorem 1.2. Let $g \geq 2$ be an integer. Then there are infinitely many imaginary quadratic fields whose ideal class group has an element of order $2 g$ and whose discriminant has only two prime divisors.

We note that Corollary 1.1 is an immediate consequence of the case $g=2^{n}$ in Theorem 1.2 and the genus theory of Gauss.
2. Proof of Theorem 1.2. To prove Theorem 1.2, we need some preliminaries. We recall a result of Brüdern, Kawada and Wooley [5], improving a previous result of Perelli [11], which implies almost all integer values of the polynomial $2 \Phi(x)$ are the sum of two primes.

Lemma 2.1. Let $\Phi(x) \in \mathbf{Z}[x]$ be a polynomial of degree k with positive leading coefficient and let $S_{k}(N, \Phi)$ be the number of positive integers n, with $1 \leq n \leq N$, for which the equation

$$
2 \Phi(n)=p+q
$$

has no solution in primes p, q. Then there is an absolute constant $c>0$ such that

$$
S_{k}(N, \Phi) \ll_{\Phi} N^{1-c / k}
$$

We note that $S_{k}(N, \Phi) \ll \Phi_{\Phi} N^{1-c / k}$ means that there is a constant C which depends on Φ and satisfies $S_{k}(N, \Phi)<C \cdot N^{1-c / k}$ for sufficiently large N. Now using well known results (for an example, see [15]) on the divisibility of class numbers of imaginary quadratic fields, we can prove Theorem 1.2.

Proof of Theorem 1.2. Let $g \geq 2$ be an integer and let

$$
\Phi(x)=2(8 x+1)^{g} \in \mathbf{Z}[X] .
$$

Then by Lemma 2.1, there are infinitely many
positive integers m^{\prime}, for which the equation

$$
\begin{equation*}
2 \Phi\left(m^{\prime}\right)=4\left(8 m^{\prime}+1\right)^{g}=p+q \tag{1}
\end{equation*}
$$

has a solution in odd primes p, q. Since $4\left(8 m^{\prime}+\right.$ $1)^{g}=p+q \equiv 4(\bmod 8)$, the primes p, q should satisfy one of the following conditions:
(i) $p \equiv 1(\bmod 8)$ and $q \equiv 3(\bmod 8)$,
(ii) $p \equiv 3(\bmod 8)$ and $q \equiv 1(\bmod 8)$,
(iii) $p \equiv 5(\bmod 8)$ and $q \equiv 7(\bmod 8)$,
(iv) $p \equiv 7(\bmod 8)$ and $q \equiv 5(\bmod 8)$.

For m^{\prime}, p, q satisfying the equation (1), let $m=$ $8 m^{\prime}+1$ and $n=\frac{p-q}{2}>0$ (we can assume $p>q$, without loss of generality). Then we have infinitely many distinct positive square-free integers
(2) $d=4 m^{2 g}-n^{2}=\left(\frac{p+q}{2}\right)^{2}-\left(\frac{p-q}{2}\right)^{2}=p q$.

We consider the ideal factorization in $\mathbf{Q}(\sqrt{-d})$

$$
\left(4 m^{2 g}\right)=\left(n^{2}+d\right)=(n+\sqrt{-d})(n-\sqrt{-d})
$$

From the conditions (i)-(iv), we have that $-d \equiv 5$ $(\bmod 8)$ and n is odd. So $\frac{n \pm \sqrt{-d}}{2}$ is an algebraic integer and we can also consider the ideal factorization in $\mathbf{Q}(\sqrt{-d})$

$$
(m)^{2 g}=\left(\frac{n+\sqrt{-d}}{2}\right)\left(\frac{n-\sqrt{-d}}{2}\right)
$$

We claim that the two ideals $\left(\frac{n+\sqrt{-d}}{2}\right)$ and $\left(\frac{n-\sqrt{-d}}{2}\right)$ are coprime. If a is a common factor, then a should divide $\left(m^{2 g}, n\right)$. But $\left(m^{2 g}, n\right)=1$, otherwise $d=$ $4 m^{2 g}-n^{2}$ is not square-free. So there are no common factors of the two ideals $\left(\frac{n+\sqrt{-d}}{2}\right)$ and $\left(\frac{n-\sqrt{-d}}{2}\right)$.

Thus each ideals $\left(\frac{n \pm \sqrt{-d}}{2}\right)$ is a $2 g$-th power, say $\mathbf{b}^{2 g}=\left(\frac{n+\sqrt{-d}}{2}\right)$. Suppose that \mathbf{b} has order $r<2 g$. Then $r \leq g$ and $\mathbf{b}^{r}=\left(\frac{u+v \sqrt{-d}}{2}\right)$, where u, v are non-zero integers such that $u \equiv v(\bmod 2)$. Since $\mathbf{Q}(\sqrt{-d})$ has only the units ± 1, we have the relation

$$
\left(\frac{n+\sqrt{-d}}{2}\right)= \pm\left(\frac{u+v \sqrt{-d}}{2}\right)^{\frac{2 g}{r}}
$$

If we take norms on both sides of the equation $\mathbf{b}^{2 g}=\left(\frac{n+\sqrt{-d}}{2}\right)$, we have

$$
\begin{aligned}
m^{2 g} & =\frac{n^{2}+d}{4}=N\left(\mathbf{b}^{r}\right)^{\frac{2 g}{r}} \\
& =\left(\frac{u^{2}+v^{2} d}{4}\right)^{\frac{2 g}{r}} \geq\left(\frac{1+d}{4}\right)^{2}
\end{aligned}
$$

that is,

$$
\begin{equation*}
4 m^{g}-1 \geq d \tag{3}
\end{equation*}
$$

But from the equation (2), we have

$$
\left(2 m^{g}-n\right)\left(2 m^{g}+n\right)=d
$$

If $2 m^{g}-n>1$ then $2 m^{g}+n \leq \frac{d}{2}$. It contradicts to (3). And $2 m^{g}-n=1$ is impossible because $2 m^{g}-$ $n=\frac{p+q}{2}-\frac{p-q}{2}=q$ can not be equal to 1 . Thus we conclude that the order of \mathbf{b} is exactly $2 g$ and completes the proof.

Remark. The construction of imaginary quadratic fields with class number divisible by $2 g$ in the proof of Theorem 1.2 is due to the idea of Balog and Ono in [1]. To get some results on the nontriviality of Shafarevich-Tate groups of certain elliptic curves, they construct infinitely many

$$
d=A B p_{1} \cdots p_{2 l}=m^{2 l}-n^{2}
$$

where A, B are integer constants and $p_{i}, 1 \leq i \leq 2 l$ are distinct primes satisfying some conditions.

Acknowledgements. The authors thank the referee for some helpful suggestions. This work was supported by KRF-2005-070-C00004.

References

[1] A. Balog and K. Ono, Elements of class groups and Shafarevich-Tate groups of elliptic curves, Duke Math. J. 120 (2003), no. 1, 35-63.
[2] P. Barrucand and H. Cohn, Notes on primes of type $x^{2}+32 y^{2}$, class number, and residuacity, J. Reine Angew. Math. 238 (1969), 67-70.
[3] H. Bauer, Zur Berechnung der 2-Klassenzahl der quadratischen Zahlkörper mit genau zwei verschiedenen Diskriminantenprimteilern, J. Reine Angew. Math. 248 (1971), 42-46.
[4] K. Belabas and E. Fouvry, Sur le 3-rang des corps quadratiques de discriminant premier ou presque premier, Duke Math. J. 98 (1999), no. 2, 217-268.
[5] J. Brüdern, K. Kawada and T. D. Wooley Additive reprensentation in thin sequences, II: The binary Goldbach problem, Mathematica 47 (2000), no. 1-2, 117-125.
[6] H. Hasse, Über die Teilbarkeit durch 2^{3} der Klassenzahl imaginär-quadratischer Zahlkörper mit genau zwei verschiedenen Diskriminantenprimteilern, J. Reine Angew. Math. 241 (1970), 1-6.
[7] H. Hasse, Über die Teilbarkeit durch 2^{3} der Klassenzahl quadratischen Zahlkörper mit genau zwei verschiedenen Diskriminantenprimteilern, Math. Nachr. 46 (1970), 61-70.
[8] P. Kaplan, Divisibilité par 8 du nombre des classes des corps quadratiques dont le 2 -groupe des classes est cyclique, et réciprocité biquadra-
tique, J. Math. Soc. Japan 25 (1973), 596-608.
[9] P. Kaplan, Unités de norme -1 de $Q(\sqrt{ } p)$ et corps de classes de degre 8 de $Q(\sqrt{ }-p)$ où p est un nombre premier congru à 1 modulo 8 , Acta Arith. 32 (1977), no. 3, 239-243.
[10] P. Kaplan, K. Williams and K. Hardy, Divisibilité par 16 du nombre des classes au sens strict des corps quadratiques réels dont le deux-groupe des classes est cyclique, Osaka J. Math. 23 (1986), no. 2, 479-489.
[11] A. Perelli, Goldbach numbers represented by polynomials, Rev. Mat. Iberoamericana, 12 (1996), no. 2, 477-490.
[12] L. Rédei, Über die Grundeinheit unt die durch 8 teilbaren Invarianten der absolten Klasseen-
gruppe im quadratischen Zahlkörpers, J. Reine Angew. Math. 171 (1934), 131-148.
[13] L. Rédei and H. Reichardt, Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers, J. Reine Angew. Math. 170 (1933), 69-74.
[14] H. Reichardt, Zur Struktur der absoluten IdealKlassengruppe im quadratichen Zahlkörper, J. Reine Angew. Math. 170 (1933), 75-82.
[15] K. Soundararajan, Divisibilty of class numbers of imaginary quadratic fields, J. London Math. Soc. (2) 61 (2000), no. 3, 681-690.
[16] Y. Yamamoto, Divisibility by 16 of class number of quadratic fields whose 2 -class groups are cyclic, Osaka J. Math. 21 (1984), no. 1, 1-22.

[^0]: 2000 Mathematics Subject Classification. Primary 11R11, 11R29.
 *) Department of Mathematics and Research Institute of Mathematics, Seoul National University, Seoul 151-747, Korea.
 **) Kyungbock High School, Seoul 110-030, Korea.

