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Abstract: In this paper, we announce a result on the relation of the analytic torsion with

the Laurent expansion of the Ruelle zeta function at s ¼ 0 for odd dimensional noncompact

hyperbolic manifolds with cusps.

Key words: Analytic torsion; Ruelle zeta function; hyperbolic manifold with cusps.

1. Introduction. In his seminal paper [1],

Fried derived a formula relating the analytic torsion

to the Laurent expansion of the Ruelle zeta function

at s ¼ 0 for compact hyperbolic manifold of odd

dimension. The corresponding formula for the eta

invariant and the value of the odd type Selberg zeta

function at s ¼ 0 had been proved by Millson in [6].

Recently in [7] the formula of Millson has been

generalized to the case of noncompact hyperbolic

manifolds with cusps. Here the eta invariant is

defined by certain regularized trace of odd heat

operator, which is essentially the same as the

b-trace of Melrose introduced in [5]. We also applied

the result for the weighted unipotent orbital

integral in [4] to compute the contribution from

cusps. Hence it is a natural question whether a

generalization of the formula of Fried for analytic

torsion could be obtained employing these methods.

In this paper, we announce such a generalization of

the formula of Fried, the relationship of the analytic

torsion with the Laurent expansion of the Ruelle

zeta function at s ¼ 0 for noncompact hyperbolic

manifolds with cusps. First we follow the idea of

Melrose in [5] to define the analytic torsion for this

noncompact case, which is explained in Section 3.

Recently in [2,3] it is also shown that the Ruelle

zeta function has the meromorphic extension over

C for odd dimensional hyperbolic manifolds with

cusps. This is briefly reviewed in Proposition 4.1.

The detailed proofs of results announced in this

paper will be given in [8].

2. Laplacians over hyperbolic manifolds

with cusps. Let us recall that a ð2nþ 1Þ-dimen-

sional noncompact hyperbolic manifold with cusps

is given by

X� ¼ �nSO0ð2nþ 1; 1Þ=SOð2nþ 1Þ

where � is a cofinite discrete subgroup of G ¼
SO0ð2nþ 1; 1Þ and K ¼ SOð2nþ 1Þ is a maximal

compact subgroup of SO0ð2nþ 1; 1Þ. Throughout

this paper, we assume that the group generated

by the eigenvalues of � contains no root of unity.

Its consequences are that � is torsion free and

� \ P ¼ � \Nð1Þ

for a �-cuspidal minimal parabolic subgroup P

and a Langlands decomposition P ¼ MAN where

M ¼ SOð2nÞ � K ¼ SOð2nþ 1Þ.
Let ð�; V�Þ be a finite-dimensional unitary

representation of �1ðX�Þ ¼ �. The vector bundle

Ek
� over X� of k-forms twisted by � is given by

Ek
� ¼ V� �� G��k V�k

where �k denotes the fundamental representation of

K ¼ SOð2nþ 1Þ acting on V�k ¼ ^kR2nþ1 �C. Then

the Laplacian acting on C1
0 ðX�; E

k
�Þ has the unique

self adjoint extension to L2ðX�; E
k
�Þ denoted by �k.

In general, the operator �k on L2ðX�; E
k
�Þ has the

discrete spectrum �pð�kÞ as well as the continuous

spectrum ½ðn� kÞ2;1Þ. The continuous spectrum of

�k is mainly controlled by the scattering operators

Ck
�ð�k; sÞ and Ck

�ð�k�1; sÞ for purely imaginary

numbers s ¼ i� 2 C. Here �k denotes the funda-

mental representation of M ¼ SOð2nÞ acting on

^kR2n �C for k ¼ 0; 1; . . . ; ðn� 1Þ and �n ¼ �þ �
�� with the half spin representations �þ; �� acting

on ^nR2n �C. These scattering operators have the

matrix forms of size dcð�Þ where
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dcð�Þ ¼
X�
j¼1

djð�Þ:

Here � denotes the number of cusps and djð�Þ
denotes the dimension of the maximal subspace of

V� over which �jPj\� acts trivially for Pj 2 P where

P :¼ fP1; . . . ; P�g denotes the set of representatives

of �-conjugacy classes of �-cuspidal minimal para-

bolic subgroups corresponding to the cusps of X�.

The scattering operator Cn
� ð�n; sÞ has the size

2 dcð�Þ since �� is un-ramified.

3. Analytic torsions for hyperbolic mani-

folds with cusps. Now let us recall that the heat

operator e�t�k is not of trace class for noncompact

hyperbolic manifold with cusps, so that we could

not take the usual trace of it. To overcome this, we

follow the idea of Melrose in [5] as follows. First

let us observe that each cusp corresponds to a �-

cuspidal parabolic subgroup P ¼ MAN and each

cuspidal end is modelled on A � �NnN where �N :¼
� \ P ¼ � \N by (1). The standard Haar measure

on G (for instance given in [9]) induces naturally a

metric over X�, which has the form du2 þ e�2udn2

over a cuspidal end where dn2 is the induced metric

over �NnN . For sufficiently large a � 0, we put Xa
�

to be the complement in X� of the cuspidal ends

whose u-coordinates are larger than a. Now, by

the Maass-Selberg relation, we could remove the

diverging term of the expansion ofZ
Xa

�

tr e�t�kðx; xÞ dx as a ! 1

and define the regularized trace Trrð�Þ of e�t�k to be

the remaining finite part of it. Then we have

Trr e�t�k
� �

¼
X

�j2�pð�kÞ
e�t�j

þ
X

‘¼k;k�1

 
dð�‘Þ
4

e�td2
‘ Tr Ck

�ð�‘; 0Þ
� �

�
dð�‘Þ
4�

Z 1

�1
e�tð�2þd2

‘
ÞTr Ckð‘; �Þ
� �

d�

!

where d‘ ¼ ðn� ‘Þ, dð�‘Þ ¼ dim V�‘ð Þ and

Ckð‘; �Þ ¼ Ck
�ð�‘; sÞ�1 d

ds
Ck

�ð�‘; sÞ
���
s¼i�

:

Actually this trace is the same as the geometric

side of the Selberg trace formula applied to the

test function given by the lifted heat kernel of �k

to G.

Now we define the spectral zeta function of

�k by

��k
ðsÞ :¼

1

�ðsÞ

Z 1

0

þ
Z 1

1

� �
ts�1Trr e�t�k � Pk

� �
dt

where Pk denotes the orthogonal projection onto

kerL2ð�kÞ. Here the small, large time integrals
R 1
0 ,R1

1 are defined for <ðsÞ � 0 and <ðsÞ 	 0 respec-

tively. The first result in this paper is

Theorem 3.1. For 0 
 k 
 ð2nþ 1Þ, the

spectral zeta function ��k
ðsÞ has the meromorphic

extension over C and is regular at s ¼ 0.

The proof of Theorem 3.1 is an application of

the Selberg trace formula in [10] with complete

computation of the weighted unipotent orbital

integral applied to the test function given by the

lifted heat kernel of �k to G. The detail of proof

will be given in [8].

By Theorem 3.1, we can define the regularized

determinant of �k by

det��k :¼ exp �
d

ds

���
s¼0

��k
ðsÞ

� �

and the analytic torsion T ðX�; �Þ by

T ðX�; �Þ :¼
det��1

det��2

� �2 � det��3

� �3
det��4

� �4 � � �
� � �

det��2n�1

� �2n�1

det��2n

� �2n � det��2nþ1

� �2nþ1
:

Note that our definition of analytic torsion is

reduced to the square of the one given in [1] when

X� is compact.

4. Expansion of Ruelle zeta function at

s ¼ 0. Let us recall that the Ruelle zeta function

R�ðsÞ is defined by

R�ðsÞ :¼
Y
�

det Id� �ð�Þe�s l�
� ��1

for <ðsÞ > 2n. Here � runs over the �-conjugacy

classes of the primitive hyperbolic elements in �,
the determinant denoted by det is taken over the

representation space V� of �, and l� denotes the

length of the prime geodesic determined by �.

Note that the above definition of the Ruelle zeta

function is the inverse of the one in [1]. In [2,3],

the following fundamental properties of R�ðsÞ are

proved,

Proposition 4.1.

(a) The Ruelle zeta function R�ðsÞ defined a priori
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for <ðsÞ > 2n has the meromorphic extension

over C.

(b) Let N0 denote the order of the singularity of

R�ðsÞ at s ¼ 0 such that lims!0 s
N0R�ðsÞ is a

nonzero finite value. Then the integer N0 is

given by

2
Xn
k¼0

ð�1Þkðnþ 1� kÞ	k þ
Xn�1

k¼0

ð�1Þkþ1dð�kÞbk

þ dcð�Þ
Xn
k¼1

ð�1Þk k dð�kÞ

where 	k :¼ dimkerL2ð�kÞ and bk is the order

of singularity of detCk
�ð�k; sÞ at s ¼ n� k.

By Proposition 4.1, we can see that the behav-

ior of the Ruelle zeta function R�ðsÞ at s ¼ 0 is

related to the spectral data of the Laplacians �k’s.

Hence it is a natural question whether the nonzero

constant lims!0 s
N0R�ðsÞ may have a relationship

with certain spectral data. It turned out that this

is given by the analytic torsion (up to a constant)

for compact case, which is the formula of Fried

in [1]. The second result in this paper states that

the essentially same formula holds for hyperbolic

manifolds with cusps when we use the analytic

torsion defined in Section 3. To state this, we need

to introduce some notation. Let us recall that

detCk
�ð�k; sÞ is a meromorphic function over C and

Ck
�ð�k; sÞ satisfies the following functional equation

Ck
�ð�k; sÞCk

�ð�k;�sÞ ¼ Id:

Hence the order of the singularity of detCk
�ð�k; sÞ

at s ¼ �ðn� kÞ is �bk. Now we put

S�ðkÞ ¼ lim
s!�ðn�kÞ

s�bk detCk
�ð�k; sÞ

¼ ð�1Þbk lim
s!ðn�kÞ

sbk detCk
�ð�k; sÞ

� ��1
:

Theorem 4.2. The following equality holds

up to sign,

lim
s!0

sN0R�ðsÞ
� ��1¼ C1 � Cdcð�Þ

2 � C3 � T ðX�; �Þ:

Here

C1 :¼
Yn�1

k¼0

�4ðn� kÞ2
� �ð�1Þk
k

C2 :¼
Yn�1

k¼0

2ð�1Þkþ1dðn;kÞ � ðn� kÞð�1Þkðdðn;kÞþdð�kÞÞ

where


k :¼ 	k � 	k�1 þ 	k�2 � . . .� 	0;

dðn; kÞ :¼
2n

k

� �
�

2n� 1

k

� �

and

C3 :¼
Yn�1

k¼0

S�ðkÞð�1Þkþ1dð�kÞ:

When X� is compact, the equality in

Theorem 4.2 is reduced to the formula of Fried

in [1]. Actually we can see that the same formula

holds under a more general condition that dcð�Þ ¼ 0.

In fact, if dcð�Þ ¼ 0, then C
dcð�Þ
2 ¼ C3 ¼ 1 and N0 is

given only by 	k’s. Moreover the sign ambiguity in

Theorem 4.2 disappear since this comes from

the scattering operators. The proof of Theorem 4.2

is mainly a complete analysis of the geometric

side of the Selberg trace formula in [10], in

particular, of the weighted unipotent orbital inte-

gral. The detail of proof will be given in [8].
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