131. Probability-theoretic Investigations on Inheritance.IV₄. Mother-Child Combinations.

(Further Continuation.)

By Yûsaku Komatu.

Department of Mathematics, Tokyo Institute of Technology and Department of Legal Medicine, Tokyo University.

(Comm. by T. FURUHATA, M.J.A., Nov. 12, 1951.)

4. Mother-children combination concerning families with several children.

We have discussed, in the preceding section, the probabilities of mother-children combinations concerning families with two children. The results can be further generalized to several children case. We now consider the set of a mother and her n children produced from a common father, n being arbitrary but fixed.

Consider again an inherited character consisting of m genes A_i (i = 1, ..., m) with distribution-probability $\{p_i\}$, the distribution being here also supposed to be in an equilibrium state. In general, the number of permutations, admitting the repetition, of selecting any n types of children without kinship is equal to

$$(4.1) 2^{-n}m^n(m+1)^n .$$

But, if the children are restricted such that they have a common mother, then the corresponding number becomes

(4.2) m^n or $(2m-1)^n$

according to the mother of a homozygote or of a heterozygote, respectively. If they are further restricted such as to have a father also in common, then number of possible permutations reduces to a very small one. In fact, corresponding to that in §3 of IV, we get the following table.

Mating	$A_{ii} \times A_{ii}$	$A_{ii} \times A_{ik}$	$A_{ii} \times A_{hh}$	$A_{ii} \times A_{hk}$	$\mathbf{A}_{ij} imes \mathbf{A}_{ij}$	$A_{ij} \times A_{ik}$	$A_{ij} \times A_{hk}$
Permutation	1	2^{n}	1	2^n	3,,	422	422

Making use of a table on one-child case written in §3 of IV, we can easily construct the corresponding table on *n*-children case.

We denote by $\pi(A_{ij}; A_{h_1 k_1}, \ldots, A_{h_n k_n})$ or briefly by

(4.3) $\pi(ij; h_1k_1, \ldots, h_nk_n)$ $(i, j, h_\nu, k_\nu = 1, \ldots, m; \nu = 1, \ldots, n)$

the probability of appearing of a combination of a mother A_{ij} and her *n* children among which ν th child is of type $A_{\lambda_{\nu}k_{\nu}}$ for $\nu = 1$, ..., *n*. This quantity is, as before, equal to zero provided either of *n* relations holds:

$$(4.4) \qquad (i-h_{\nu})(i-k_{\nu})(j-h_{\nu})(j-k_{\nu}) \neq 0 \qquad (\nu=1,\ldots,n).$$

In general, the different types of children belonging to the same family are at most 4; moreover, if the mother is of a homozygote, they reduce to at most two. Symmetry relations

(4.5)
$$\begin{aligned} \pi(ij; \ldots, h_{\nu}k_{\nu}, \ldots) &= \pi(ji; \ldots, h_{\nu}k_{\nu}, \ldots) = \pi(ij; \ldots, k_{\nu}h_{\nu}, \ldots) \\ &= \pi(ji; \ldots, k_{\nu}h_{\nu}, \ldots) \qquad (\nu = 1, \ldots, n) \end{aligned}$$

result immediately from the definition. Thus, we can make again an *agreement* corresponding to that immediately subsequent to (3.3)of IV. Symmetry relations

(4.6)
$$\pi(ij;\ldots,h_{\mu}^{\underline{\nu}}k_{\mu},\ldots,h_{\nu}^{\underline{\nu}}k_{\nu},\ldots)=\pi(ij;\ldots,h_{\nu}^{\underline{\nu}}k_{\nu},\ldots,h_{\mu}^{\underline{\nu}}k_{\mu},\ldots)$$
$$(\mu,\nu=1,\ldots,n)$$

corresponding to (3.4) of IV, are also obvious.

Now, a mother of homozygote A_{ii} can produce children of at most two types among m possible types containing the gene A_i . There are m cases where n children are together of the same type. All the cases where $n-\nu$ ($0 < \nu < n$) children are of the same type each other and the remaining ν are of the same type each other but different from the former $n-\nu$, amount to

$$\binom{m}{2}\binom{n}{\nu} = \frac{m(m-1)}{2} \frac{n!}{\nu! (n-\nu)!}.$$

On the other hand, there exist m possible types of mother with homozygote. Hence, the whole number of non-vanishing combination-probabilities, containing homozygotic mothers, is equal to

(4.7)
$$m\left(m+\binom{m}{2}\sum_{\nu=1}^{n-1}\binom{n}{\nu}\right) = m^{2}(1+(2^{n-1}-1)(m-1)).$$

Next, a mother of heterozygote $A_{ij}(i \neq j)$ can produce children of at most four types among 2m-1 possible types containing at least one of A_i and A_j . There are 2m-1 cases where n children are together of the same type. The cases where $n-\nu (0 < \nu < n)$ are of the same type each other and the remaining ν are of the same type each other but different from the former $n-\nu$, amount to

$$\binom{2m-1}{2} \frac{n!}{\nu! (n-\nu)!}$$

The cases where *n* children are divided into three classes of different types consisting of $n-\mu-\nu$, μ , ν ($0 < \mu$, ν ; $\mu+\nu < n$) children amount to

$$\binom{2m-1}{3} \frac{n!}{\mu! \, \nu! \, (n-\mu-\nu)!}$$

and those where *n* children are divided into four classes of different types consisting of $n-\lambda-\mu-\nu$, λ , μ , ν ($0 < \lambda$, μ , ν ; $\lambda+\mu+\nu < n$) children, to

696

No. 9.] Investigations on Inheritance. IV₄. Mother-Child Combinations. 607

$$\binom{2m-1}{4} \frac{n!}{\lambda! \mu! \nu! (n-\lambda-\mu-\nu)!}$$

In view of the identities

$$\sum_{\substack{0 < \mu, \nu \\ \mu + \nu < n}} \frac{n!}{\mu! \nu! (n - \mu - \nu)!} = \sum_{\substack{0 \leq \mu, \nu \\ \mu + \nu < n}} \frac{n!}{\mu! \nu! (n - \mu - \nu)!} - \sum_{\nu=0}^{n} \frac{n!}{\nu! (n - \nu)!} - 2\sum_{\nu=1}^{n-1} \frac{n!}{\nu! (n - \nu)!} - 1$$

= (1 + 1 + 1)ⁿ - (1 + 1)ⁿ - 2(2ⁿ - 2) - 1 = 3(3ⁿ⁻¹ - 2ⁿ + 1)

and

$$\sum_{\substack{0 < \lambda, \mu, \nu \\ \lambda + \mu + \nu < n}} \frac{n!}{\lambda! \mu! \nu! (n - \lambda - \mu - \nu)!} = \sum_{\substack{0 < \lambda, \mu, \nu \\ \lambda + \mu + \nu < n}} \frac{n!}{\lambda! \mu! \nu! (n - \lambda - \mu - \nu)!} - \sum_{\substack{0 < \mu, \nu \\ \mu + \nu < n}} \frac{n!}{\mu! \nu! (n - \mu - \nu)!} - 3 \sum_{\substack{0 < \mu, \nu \\ \mu + \nu < n}} \frac{n!}{\mu! \nu! (n - \mu - \nu)!} - 3 \sum_{\nu=1}^{n-1} \frac{n!}{\nu! (n - \nu)!} - 1$$
$$= (1 + 1 + 1)^n - (1 + 1 + 1)^n - 3 \times 3(3^{n-1} - 2^n + 1) - 3 \times 2(2^{n-1} - 1) - 1 = 4(4^{n-1} - 3^n + 3 \cdot 2^{n-1} - 1),$$

we see that the number of non-vanishing combination-probabilities, containing heterozygotic mothers, is equal to

$$(4.8) \qquad \begin{pmatrix} \binom{m}{2} \left(2m - 1 + \left(\frac{2m - 1}{2} \right) \sum_{\nu=1}^{n-1} \frac{n!}{\nu! (n-\nu)!} + \left(\frac{2m - 1}{3} \right) \sum_{\substack{0 \le \mu, \nu \\ \mu+\nu \le n}} \frac{n!}{\mu! \nu! (n-\mu-\nu)!} \\ + \left(\frac{2m - 1}{4} \right) \sum_{\substack{0 \le \lambda, \mu, \nu \\ \lambda^{\mu} + \nu \le n}} \frac{n!}{\lambda! \mu! \nu! (n-\lambda-\mu-\nu)!} \right) = \frac{1}{6} m(m-1)(2m-1) \\ \times (3 + 6(2^{n-1} - 1)(m-1) + 3(3^{n-1} - 2^n + 1)(m-1)(2m-3) \\ + 2(4^{n-1} - 3^n + 3 \cdot 2^{n-1} - 1)(m-1)(2m-3)(m-2)) .$$

Thus, the total number of non-vanishing combination-probabilities reduces to the sum of (4.7) and (4.8), namely

$$(4.9) \quad \begin{array}{l} m^2(2^{n-1}(m-1)-(m-2)) + \frac{1}{6}m(m-1)(2m-1)(2\cdot 4^{n-1}(m-1)) \\ \times (2m-3)(m-2) - 3^n(m-1)(2m-3)(2m-5) + 3\cdot 2^n(m-1)) \\ \times (m-2)(2m-5) - (m-2)(2m-3)(2m-5)) \end{array}$$

The result for n = 2 is a special case contained in (4.9).

If we remember the symmetry relations (4.6), the number of non-vanishing combination-probabilities essentially different each other will be extremely less than (4.9). Indeed, in the case of homozygotic mothers, such a number is at most

(4.10)
$$m\left(m + \binom{m}{2}\right) = \frac{1}{2}m^2(m+1).$$

In case of heterozygotic mothers, three cases are distinguished according to $n = 2, n = 3, n \ge 4$, and such a number is at most

$$\binom{m}{2}\left(2m-1+\binom{2m-1}{2}\right) = \frac{1}{2}m^{2}(m-1)(2m-1) \qquad (n=2),$$

$$\binom{m}{2}\left(2m-1+\binom{2m-1}{2}+\binom{2m-1}{3}\right)$$

$$(4.11) \qquad = \frac{1}{6}m(m-1)(2m-1)(2m^{2}-2m+3) \qquad (n=3),$$

Y. KOMATU.

[Vol. 27,

$$\binom{m}{2} \left(2m - 1 + \binom{2m - 1}{2} + \binom{2m - 1}{3} + \binom{2m - 1}{4} \right)$$

= $\frac{1}{12}m^2(m - 1)(2m - 1)(2m^2 - 5m + 9)$ (n \geq 4).

Hence, the total number of non-vanishing combination-probabilities essentially different each other is, as the sum of (4.10) and (4.11), given by

$$m^2(m^2-m+1)$$
 (n = 2),

$$(4.12) \quad \frac{1}{2}m^2(m+1) + \frac{1}{6}m(m-1)(2m-1)(2m^2-2m+3) \quad (n=3),$$

$$\frac{1}{2}m^2(m+1) + \frac{1}{12}m^2(m-1)(2m-1)(2m^2-5m+9) \qquad (n \ge 4).$$

The result for n = 2 contained in (4.12) is nothing but the one already stated. It may be especially noticed that the number is independent of *n* provided $n \ge 4$. For instance, if *m* is equal to 2, 3, 4 or 10, then the numbers in (4.12) become 13, 93, 418 or 52705 for n = 3, and 13, 108, 628 or 227125 for $n \ge 4$, respectively.

We now enter into our main discourse. The order of n children being indifferent, as remarked in (4.6), we denote briefly by

(4.13)
$$\pi(ij; h_1k_1^{n_1}, h_2k_2^{n_2}, \ldots, h_ak_a^{n_a}) \qquad \left(\sum_{\nu=1}^a n_\nu = n\right)$$

the probability of the combination composed of a mother of A_{ij} and the 1st to n_1 th children of $A_{n_1k_1}$, the (n_1+1) th to (n_1+n_2) th children of $A_{n_2k_2}, \ldots$, the $(n_1+\ldots+n_{\alpha-1}+1)$ th to $(n_1+\ldots+n_{\alpha-1}+n_\alpha) = n$ th children of $A_{n_\alpha k_\alpha}$, where α is a number such as $1 \leq \alpha \leq 4$. By permutating the order of children, there will appear $n! / \prod_{\nu=1}^{\alpha} n_{\nu}!$ probabilities which have the same value.

We first consider a mother of homozygote A_{ii} . Possible type of a father who can produce a child A_{ii} with this mother are A_{ii} , A_{ih} $(h \neq i)$. If the type of father is A_{ii} , then that of a child is always A_{ii} , while if the type of father is A_{ih} , then a child A_{ii} is produced in probability 1/2. Thus we get, as in (3.10) of IV,

$$(4.14) \qquad \pi(ii; ii^{n}) = 1p_{i}^{4} + 2^{-n} 2p_{i}^{3} \sum_{h+i} p_{h} = 2^{-n+1} p_{i}^{3} (1 + (2^{n-1} - 1)p_{i}).$$

The type of a father who can produce at least two children A_{ii} and A_{ih} $(h \neq i)$ with a mother A_{ii} must be A_{ih} , whence it follows

$$(4.15) \quad \pi(ii; ii^{n-\nu}, ih^{\nu}) = 2^{-n} 2p_i^3 p_h = 2^{-n+1} p_i^3 p_h \qquad (h \neq i; 0 < \nu < n).$$

Possible types of a father who can produce a child $A_{ih}(h \neq i)$ are A_{ih} , A_{hh} and A_{hk} $(k \neq i, h)$, and hence we get

(4.16)
$$\pi(ii;ih^{n}) = 2^{-n} 2p_{i}^{3}p_{h} + 1p_{i}^{2}p_{h}^{2} + 2^{-n} 2p_{i}^{2}p_{h} \sum_{k=i,h} p_{k}$$
$$= 2^{-n+1} p_{i}^{2}p_{h} (1 + (2^{n-1} - 1)p_{h}) \qquad (h \neq i).$$

Since the only possible type of a father who can produce at least two children A_{ih} $(h \neq i)$ and A_{ik} $(k \neq i, h)$ is A_{hk} , we obtain

608

No. 9.] Investigations on Inheritance. IV₄. Mother-Child Combinations.

(4.17)
$$\pi(ii;ih^{n-\nu},ik^{\nu}) = 2^{-n} 2p_i^2 p_h p_k = 2^{-n+1} p_i^2 p_h p_k$$
$$(h,k \neq i;h \neq k; 0 < \nu < n).$$

609

The last result remains valid, as seen from (4.15), if only one of h or k coincides with i. Thus, the case of a homozygotic mother has been worked out essentially.

We next consider a mother of heterozygote A_{ij} $(i \neq j)$. In case where *n* children are together of the same homozygote, we get

(4.18)

$$\pi(ij; ii^{n}) = 2^{-n} 2p_{i}^{n}p_{j} + 4^{-n} 4p_{i}^{2}p_{j}^{2} + 4^{-n} 4p_{i}^{2}p_{j} \sum_{h \neq i,j} p_{h}$$

$$= 4^{-n+1} p_{i}^{2}p_{j} (1 + (2^{n-1} - 1)p_{i}),$$
(4.19)

$$\pi(ij; jj^{n}) = 4^{-n+1} p_{i}p_{j}^{2} (1 + (2^{n-1} - 1)p_{j}).$$

In case where n children are together of the same heterozygote, we get

(4.20)
$$\begin{aligned} \pi(ij;\,ij^n) = & 2^{-n} \, 2p_i^3 p_j + 2^{-n} \, 2p_i p_j^3 + 2^{-n} \, 4p_i^2 p_j^2 + 4^{-n} \, 4p_i^2 p_j \sum_{h \neq i,j} p_h \\ & + 4^{-n} \, 4p_i p_j^2 \sum_{h \neq i,j} p_h = 4^{-n+1} \, p_i p_j (p_i + p_j) (1 + (2^{n-1} - 1)(p_i + p_j)), \end{aligned}$$

(4.21)
$$\begin{aligned} \pi(ij;ih^n) &= 4^{-n} 4p_i^2 p_j p_h + 4^{-n} 4p_i p_j^2 p_h + 2^{-n} p_i p_j p_h^2 \\ &+ 4^{-n} 4p_i p_j p_h \sum_{k \neq i,j,h} p_k = 4^{-n+1} p_i p_j p_h (1 + (2^{n-1} - 1)p_h) \qquad (h \neq i,j), \end{aligned}$$

$$(4.22) \quad \pi(ij;jh^n) = 4^{-n+1} p_i p_j p_h (1 + (2^{n-1} - 1)p_h) \qquad (h \neq i,j).$$

Only possible type of a father who can produce at least two children A_{ii} and A_{jj} is A_{ij} , whence it follows

$$(4.23) \quad \pi(ij; ii^{n-\nu}, jj^{\nu}) = 4^{-n} 4p_i^2 p_j^2 = 4^{-n+1} p_i^2 p_j^2 \qquad (0 < \nu < n).$$

Possible types of a father who can produce at least two children A_{ii} and A_{ij} are A_{ii} , A_{ij} , A_{ih} $(h \neq i, j)$, and hence we obtain

(4.24)
$$\begin{aligned} \pi(ij;\,ii^{n-\nu},\,ij^{\nu}) = & 2^{-n} \, 2p_i^3 p_j + 4^{-n+\nu} 2^{-\nu} \, 4p_i^2 p_j^2 + 4^{-n} \, 4p_i^2 \, p_j \sum_{\substack{h \neq i, j \\ h \neq i, j}} p_h \\ = & 4^{-n+1} \, p_i^2 p_j \, (1 + (2^{n-1} - 1) p_i + (2^{\nu} - 1) p_j) \quad (0 < \nu < n), \end{aligned}$$

and similarly

$$(4.25) \qquad \pi(ij; jj^{n-\nu}, ij^{\nu}) = 4^{-n+1} p_i p_j^2 (1 + (2^{\nu} - 1)p_i + (2^{n-1} - 1)p_j) \\ (0 < \nu < n)$$

The last two results remain valid, as seen from (4.18) and (4.19), also for $\nu = 0$.

In similar manners, we get in turn the following results:

Y. KOMATU.

[Vol. 27,

$$(4.31) \quad \pi(ij; ii^{n-\lambda-\mu-\nu}, ij^{\lambda}, ih^{\mu}, jh^{\nu}) = 4^{-n}4p_{i}^{2}p_{j}p_{\lambda} = 4^{-n+1}p_{i}^{2}p_{j}p_{\lambda} \\ (h \neq i, j; 0 < \mu + \nu \leq \lambda + \mu + \nu < n), \\ (4.32) \quad \pi(ij; jj^{n-\lambda-\mu-\nu}, ij^{\lambda}, ih^{\mu}, jh^{\nu}) = 4^{-n+1}p_{i}p_{j}^{2}p_{\lambda} \\ (h \neq i, j; 0 < \mu + \nu \leq \lambda + \mu + \nu < n), \\ (4.33) \quad \pi(ij; ih^{n-\lambda-\mu-\nu}, ik^{\lambda}, jh^{\mu}, jk^{\nu}) = 4^{-n}4p_{i}p_{j}p_{\lambda}p_{k} = 4^{-n+1}p_{i}p_{j}p_{\lambda}p_{k} \\ (h, k \neq i, j; h \neq k; 0 < \lambda + \nu < n). \end{cases}$$

Thus, the case of a heterozygotic mother has also been worked out essentially.

It will be noticed that, for instance, the result (4.23) is contained in (4.30), as a special case $\nu = 0$. Moreover, in (4.31) to (4.33) the case $0 < \lambda$, μ , $\nu < n$ does not really appear for n < 4.

The passage to the corresponding results on phenotypes in which recessive genes are interested can be done by means of the usual procedure. Finally, we notice that the mixed mother-child combinations could also be discussed; the fundamental interrelations analogous to (3.29) of IV being then of importance.

- To be continued -