35. On the Extension of Klein's Geometrical Interpretation of Continued Fraction.

Seigo Fukasawa.
Mathematical Institute, Tohoku Imperial University.

(Rec. Feb. 13, 1926. Comm. by Matsusaburô Fujiwara, M.I.A., March 12, 1926.)
Klein gave in his work "Ausgewählte Kapitel aus der Zahlentheorie " a geometrical interpretation of continued fraction, and I have made use of it to prove Hurwitz's theorem and its extensions on continued fraction. ${ }^{1)}$ I wish in this note to extend the idea of Klein to give some precise account of the order of approximation of $|\alpha x-y+\beta|$ to zero.

Let L be the straight line $\alpha x-y+\beta=0$, where α denotes an arbitrary positive irrational number and β any real number between 0 and 1 , and suppose that it passes through no lattice point, (that is the point whose coordinates are integers). Let $\left(Z_{1}\right)=A_{0} A_{1} A_{2} \ldots,\left(Z_{2}\right)=B_{0} B_{1} B_{2} \ldots$, where $A_{0}=(0,1), B_{0}=(0,0)$, be two polygonal lines, convex towards L, whose vertices are all lattice points, and such that there is no lattice point between $\left(Z_{1}\right),\left(Z_{2}\right)$. Next let $\left(Z_{3}\right),\left(Z_{4}\right)$ be the analogous polygonal lines in the left half plane. We call the vertices of $\left(Z_{1}\right),\left(Z_{2}\right),\left(Z_{3}\right),\left(Z_{4}\right)$ the principal approximate points, while the lattice points on the sides the intermediate approximate points.

To construct $\left(\boldsymbol{Z}_{1}\right),\left(\boldsymbol{Z}_{2}\right)$ we proceed as follows. Since the lattice points in the upper half plane nearest to $A_{3} B_{0}$ lie on a parallel line to $A_{0} B_{0}$, we take two consecutive lattice points A^{\prime}, B^{\prime} on this line, which intercept L, the sense $A^{\prime} B^{\prime}$ being the same as $A_{0} B_{0}$. We take also a fixed lattice point H on the same line in the opposite side of A^{\prime} with respect to B^{\prime}. Then we can determine a positive integer b^{\prime} such that $H A^{\prime}=b_{1} \cdot B^{\prime} A^{\prime}$. Next, if the prolonged portion of $A_{\mathrm{J}} A^{\prime}$ cut L, then determine two consecutive lattice points $A_{1}, A^{\prime \prime}$ on this line which intercept L, and let $A_{0} A_{1}=a_{1} \cdot A_{0} A^{\prime}, A_{0} A^{\prime \prime}=\left(a_{1}+1\right) A_{0} A^{\prime}$. On the other hand, if the prolonged portion of $B_{0} B^{\prime}$ cut L, then determine two consecutive lattice points $B_{1}, B^{\prime \prime}$ on this line which intercept L, and let

1) Fukasawa, Über Kleinsche geometrische Darstellung des Kettenbuchs, Japanese Journ. of Math., 2 (1925), 101-114.
$B_{0} B_{1}=a_{1} \cdot B_{0} B^{\prime}, B_{0} B^{\prime \prime}=\left(a_{1}+1\right) B_{0} B^{\prime}$. To distinguish these two cases, we introduce a number τ, which is equal to 1 or 0 according as the first or the second case occurs. Thus we determine as the first step a triple system of integers (a_{1}, b_{1}, τ_{1}).

If the first case occurs, then we proceed similarly, taking $B_{0}, A_{1}, A^{\prime \prime}$ instead of A_{0}, B_{0}, H, and determine the second system $\left(a_{2}, b_{2}, \tau_{2}\right)$. If the second case occurs, then we take $A_{0}, B_{1}, B^{\prime \prime}$ instead of A_{0}, B_{J}, H, and determine $\left(a_{2}, b_{2}, \tau_{2}\right)$. In this way we can determine a system of characteristic numbers $\left(a_{i}, b_{i}, \tau_{i}\right), i=1,2,3, \ldots$

By means of the affin-transformation, which does not change the lattice system as a whole, and the area, we can prove that

$$
\begin{gathered}
\alpha=b_{1}-\frac{\nu_{1}}{a_{1}}+\frac{1}{b_{2}}-\frac{\nu_{2}}{a_{2}}+\frac{1}{b_{3}}-\frac{\nu_{3}}{a_{3}}+\cdots \cdots, \\
\beta=\left(1-\tau_{1}\right)-\frac{\left(1-\tau_{2}\right) \nu_{1}}{1+a_{1} \alpha_{1}}+\frac{\left(1-\tau_{3}\right) \nu_{1} \nu_{2}}{\left(1+a_{1} \alpha_{1}\right)\left(1+a_{2} \alpha_{2}\right)} \\
-\frac{\left(1-\tau_{4}\right) \nu_{1} \nu_{2} \nu_{3}}{\left(1+a_{1} a_{1}\right)\left(1+a_{2} a_{2}\right)\left(1+a_{3} \alpha_{3}\right)}+\cdots \cdots,
\end{gathered}
$$

where $\nu_{k}=1$ or -1 according as $\tau_{k}=0$ or 1 , and

$$
\alpha_{n}=b_{n+1}-\frac{\nu_{n+1}}{a_{n+1}}+\frac{1}{b_{n+2}}-\frac{\nu_{n+2}}{a_{n+2}}+\cdots \cdots
$$

From these geometrical considerations we can prove the following facts.

Let $P=(x, y)$ be a lattice point and put $\lambda(P)=|x(\alpha x-y+\beta)|$, which represents the area of the parallelogram formed by L, the y axis and two parallel lines to them passing through P. Then :
(1) If P be any intermediate approximate point on the side P_{n} P_{n+1} of the polygonal lines $\left(Z_{1}\right), \ldots,\left(Z_{4}\right)$, then $\lambda(P)>\lambda\left(P_{n}\right), \lambda(P)>\lambda\left(P_{n+1}\right)$.
(2) For any principal approximate point $P, \lambda(P)<1$.
(3) Let P_{n} be a principal approximate point on $\left(Z_{2}\right)$, and P_{m} be the principal approximate point $\left(Z_{1}\right)$, which comes just before P_{n} in the way of construction of $\left(Z_{1}\right),\left(Z_{2}\right)$, and P_{l} be the lattice point on the side of $\left(Z_{2}\right)$, passing through P_{n} such that $P_{l} P_{n}$ contains no lattice point. Further let P_{n}^{\prime} be the lattice point on $\left(Z_{1}\right)$ such that $P_{m} P^{\prime}{ }_{n}$ contains no lattice point, and Q_{n} be vertex of the parallelogram $P_{l} P_{m} P_{n} Q_{n}$. Then

Mini. $\left(\lambda\left(P_{n}\right), \lambda\left(P_{m}\right), \lambda\left(P_{l}\right), \lambda\left(\mathrm{Q}_{n}\right)\right)$
or

$$
\text { Mini. }\left(\lambda\left(P_{n}\right), \lambda\left(P_{m}\right), \lambda\left(P_{n}^{\prime}\right), \lambda\left(\mathrm{Q}_{n}\right)\right)<\frac{1}{4} .
$$

Since Q_{n} does not remain always at finite for $n \rightarrow \infty$, this inequality
represents nothing but Minkowski's theorem: There are infinitely many pairs of integers (x, y) which satisfy

$$
|x(\alpha x-y+\beta)|<\frac{1}{4}
$$

(4) The necessary and sufficient condition that there exists only a finite number of integers satisfying

$$
|x(\alpha x-y+\beta)|<\frac{1}{\mu},(\mu>4)
$$

is that there exists an integer n_{0} such that for $n>n_{0}$

$$
\begin{array}{ll}
& \left(a_{2 n}, b_{2 n}, \tau_{2 n}\right)=(1,1,0), a_{2 n+1}, b_{2 n+1} \rightarrow \infty, b_{2 n+1} / a_{2 n-1} \rightarrow 1 \\
\text { or } \quad & \left(a_{2 n+1}, b_{2 n+1}, \tau_{2 n+1}\right)=(1,1,0), a_{2 n}, b_{2 n} \rightarrow \infty, b_{2 n+2} / a_{2 n} \rightarrow 1 .
\end{array}
$$

A special case $\beta=1 / 2$ was first treated by Grace in his paper, Note on a Diophantine Approximation, Proc. London Math. Society, Ser. II, 17 (1918).

