35. On the Extension of Klein's Geometrical Interpretation of Continued Fraction.

Seigo FUKASAWA.

Mathematical Institute, Tohoku Imperial University.

(Rec. Feb. 13, 1926. Comm. by Matsusaburô FUJIWARA, M.I.A., March 12, 1926.)

Klein gave in his work "Ausgewählte Kapitel aus der Zahlentheorie" a geometrical interpretation of continued fraction, and I have made use of it to prove Hurwitz's theorem and its extensions on continued fraction." I wish in this note to extend the idea of Klein to give some precise account of the order of approximation of $|\alpha x - y + \beta|$ to zero.

Let L be the straight line $ax-y+\beta=0$, where a denotes an arbitrary positive irrational number and β any real number between 0 and 1, and suppose that it passes through no lattice point, (that is the point whose coordinates are integers). Let $(Z_1) = A_0A_1A_2..., (Z_2) = B_0B_1B_2...$, where $A_0 = (0,1), B_0 = (0,0)$, be two polygonal lines, convex towards L, whose vertices are all lattice points, and such that there is no lattice point between $(Z_1), (Z_2)$. Next let $(Z_3), (Z_4)$ be the analogous polygonal lines in the left half plane. We call the vertices of $(Z_1), (Z_2), (Z_3), (Z_4)$ the principal approximate points, while the lattice points on the sides the intermediate approximate points.

To construct (Z_1) , (Z_2) we proceed as follows. Since the lattice points in the upper half plane nearest to A_3B_0 lie on a parallel line to A_0B_0 , we take two consecutive lattice points A', B' on this line, which intercept L, the sense A'B' being the same as A_0B_0 . We take also a fixed lattice point H on the same line in the opposite side of A' with respect to B'. Then we can determine a positive integer b' such that $HA' = b_1 \cdot B'A'$. Next, if the prolonged portion of A_3A' cut L, then determine two consecutive lattice points A_1 , A'' on this line which intercept L, and let $A_0A_1 = a_1 \cdot A_0A'$, $A_0A'' = (a_1+1) A_0A'$. On the other hand, if the prolonged portion of B_0B' cut L, then determine two consecutive lattice points B_1 , B'' on this line which intercept L, and let

¹⁾ FUKASAWA, Über Kleinsche geometrische Darstellung des Kettenbuchs, Japanese Journ. of Math., 2 (1925), 101-114.

 $B_0B_1 = a_1 \cdot B_0B'$, $B_0B'' = (a_1+1) B_0B'$. To distinguish these two cases, we introduce a number τ , which is equal to 1 or 0 according as the first or the second case occurs. Thus we determine as the first step a triple system of integers (a_1, b_1, τ_1) .

If the first case occurs, then we proceed similarly, taking B_0 , A_1 , A'' instead of A_0 , B_0 , H, and determine the second system (a_2, b_2, τ_2) . If the second case occurs, then we take A_0 , B_1 , B'' instead of A_0 , B_0 , H, and determine (a_2, b_2, τ_2) . In this way we can determine a system of characteristic numbers (a_i, b_i, τ_i) , i = 1, 2, 3, ...

By means of the affin-transformation, which does not change the lattice system as a whole, and the area, we can prove that

$$a = b_1 - \frac{\nu_1}{a_1} + \frac{1}{b_2} - \frac{\nu_2}{a_2} + \frac{1}{b_3} - \frac{\nu_3}{a_3} + \cdots ,$$

$$\beta = (1 - \tau_1) - \frac{(1 - \tau_2)\nu_1}{1 + a_1a_1} + \frac{(1 - \tau_3)\nu_1\nu_2}{(1 + a_1a_1)(1 + a_2a_2)} - \frac{(1 - \tau_4)\nu_1\nu_2\nu_3}{(1 + a_1a_1)(1 + a_2a_2)(1 + a_3a_3)} + \cdots ,$$

where $\nu_k = 1$ or -1 according as $\tau_k = 0$ or 1, and

$$a_n = b_{n+1} - \frac{\nu_{n+1}}{a_{n+1}} + \frac{1}{b_{n+2}} - \frac{\nu_{n+2}}{a_{n+2}} + \cdots$$

From these geometrical considerations we can prove the following facts.

Let P = (x, y) be a lattice point and put $\lambda(P) = |x(\alpha x - y + \beta)|$, which represents the area of the parallelogram formed by L, the yaxis and two parallel lines to them passing through P. Then:

(1) If P be any intermediate approximate point on the side P_n
 P_{n+1} of the polygonal lines (Z₁),..., (Z₄), then λ(P) > λ(P_n), λ(P) > λ(P_{n+1}).
 (2) For any principal approximate point P, λ(P) < 1.

(3) Let P_n be a principal approximate point on (Z_2) , and P_m be the principal approximate point (Z_1) , which comes just before P_n in the way of construction of (Z_1) , (Z_2) , and P_i be the lattice point on the side of (Z_2) , passing through P_n such that P_iP_n contains no lattice point. Further let P'_n be the lattice point on (Z_1) such that $P_mP'_n$ contains no lattice point, and Q_n be vertex of the parallelogram $P_iP_mP_nQ_n$. Then

or

$$\begin{array}{l}
\operatorname{Mini.} (\lambda(P_n), \lambda(P_m), \lambda(P_l), \lambda(Q_n)) \\
\operatorname{Mini.} (\lambda(P_n), \lambda(P_m), \lambda(P'_n), \lambda(Q_n)) < \frac{1}{4}
\end{array}$$

Since Q_n does not remain always at finite for $n \rightarrow \infty$, this inequality

represents nothing but Minkowski's theorem : There are infinitely many pairs of integers (x, y) which satisfy

$$|x(ax-y+\beta)| < \frac{1}{4}.$$

(4) The necessary and sufficient condition that there exists only a finite number of integers satisfying

$$|x(ax-y+\beta)| < \frac{1}{\mu}, (\mu > 4)$$

is that there exists an integer n_0 such that for $n > n_0$

$$(a_{2n}, b_{2n}, \tau_{2n}) = (1, 1, 0), a_{2n+1}, b_{2n+1} \rightarrow \infty, b_{2n+1}/a_{2n-1} \rightarrow 1,$$

or
$$(a_{2n+1}, b_{2n+1}, \tau_{2n+1}) = (1, 1, 0), a_{2n}, b_{2n} \rightarrow \infty, b_{2n+2}/a_{2n} \rightarrow 1.$$

A special case $\beta = 1/2$ was first treated by Grace in his paper, Note on a Diophantine Approximation, Proc. London Math. Society, Ser. II, 17 (1918).

102