34. A New Elementary Proof of a Theorem of Minkowski.

Matsusaburô FUJIWARA, M.I.A.

Mathematical Institute, Tohoku Imperial Uuniversity.

(Rec. Feb. 13, 1926. Comm. March 12, 1926)

In the following Note, No. 35, Fukasawa extends Klein's geometrical interpretation of continued fraction and proves Minkowski's theorem¹⁾ in a more precise form. I will here add another simple proof based on the same standpoint as in my previous paper on the approximation of an irrational number by rational numbers.²⁾

Let *a* be any positive irrational number, β any real number between 0 and 1, for which there is no pair of integers (x, y) which satisfies $ax-y+\beta=0$. Further let *L* be the straight line $ax - y + \beta = 0$ and $A_0 = (0,0), B_0 = (-1,0)$. Then construct two polygonal lines $(A) = A_0A_1A_2..., (B) = B_0B_1B_2...$, convex towards *L*, such that their vertices are all lattice points, that is points whose coordinates are integers, and that there is no lattice point in the domain *D* enclosed by the *x*-axis, (*A*) and (*B*).

Let C_{n+1} be any lattice point on (A) or (B), say (B), and C_n , C_{n+2} two consecutive lattice points on (A), such that the abscissa of C_{n+1} lies between those of C_n and C_{n+2} . If we construct the parallelogram $C_{n-1}C_n$ $C_{n+1} C_{n+1}$, then C_{n-1} must lie below the x-axis; for, the straight line passing through C_{n+1} , parallel to C_nC_{n+2} cuts the x-axis at a point Mbetween A_j , B_0 , and if $C_{n+1}M < C_nC_{n+1}$, then there will be a lattice point on the segment $C_{n+1}M$, which lies in the domain D, contrary to the assumption.

Let the coordinates of C_k be (Q_k, P_k) , and M_k be the intersection of L with the line passing through C_k parallel to the y-axis, then $\alpha Q_k - P_k + \beta$ is equal to $C_k M_k$ with the sign + or --according as C_k lies above or below L. Therefore from the assumption we have

¹⁾ Minkowski, Diophantische Approximationen. See also Remak, Neuer Beweis eines Minkowskischen Satzes, Journal f. Math., 142 (1913); Scherrer, Zur Geometrie der Zahlen, Math. Annalen, 89 (1923).

²⁾ These Proceedings, 2, 1 - 3.

M. FUJIWARA.

$$S_{n+2} = Q_{n+2}(aQ_{n+2} - P_{n+2} + \beta) - S_{n+1} = Q_{n+1}(aQ_{n+1} - P_{n+1} + \beta) S_n = Q_n \quad (aQ_n - P_n + \beta), S_k = |Q_k(aQ_k - P_k + \beta)|.$$
(1)

where

Eliminating α , β and observing that the area of the triangle $C_n C_{n+1} C_{n+2}$ is equal to 1/2, we get

$$\frac{Q_{n+2} - Q_{n+1}}{Q_n} S_n + \frac{Q_{n+2} - Q_n}{Q_{n+1}} S_{n+1} + \frac{Q_{n+1} - Q_n}{Q_{n+2}} S_{n+2} = 1.$$
 (2)

On the other hand we have the relation

$$\frac{S_{n+2}}{Q_{n+2}} + \frac{S_{n+1}}{Q_{n+1}} = \frac{S_n}{Q_n} + \frac{S_{n-1}}{Q_{n-1}},$$
(3)

when C_{n-1} lies below the line *L*, for, $C_n M_n - C_{n+2} M_{n+2} = C_{n+1} M_{n+1} + C_{n-1} M_{n-1}$, $Q_{n-1} < 0$. This relation is also deducible from (1) and $-S_{n-1} = Q_{n-1} (\alpha Q_{n-1} - P_{n-1} + \beta)$.

From (2), (3) it follows immediately, taking $Q_{n+2} - Q_{n+1} = Q_n - Q_{n-1}$, $Q_{n-1} < 0$ into account

$$1 = \frac{Q_{n+2}}{Q_{n+1}} S_{n+1} + \frac{Q_{n+1}}{Q_{n+2}} S_{n+2} + \frac{Q_n}{|Q_{n-1}|} S_{n-1} + \frac{|Q_{n-1}|}{Q_n} S_n$$

$$\geq \left(\frac{Q_{n+2}}{Q_{n+1}} + \frac{Q_{n+1}}{Q_{n+2}} + \frac{Q_n}{|Q_{n-1}|} + \frac{|Q_{n-1}|}{Q_n}\right) \text{Mini.} (S_{n-1}, S_n, S_{n+1}, S_{n+2})$$

$$\geq 4 \text{ Mini.} (S_{n-1}, S_n, S_{n+1}, S_{n+2}), \qquad (4)$$

for $\mu + \frac{1}{\mu} \geq 2$, if $\mu > 0$.

In the case where C_{n-1} , C_{n+1} , C_{n+2} lie below L and C_n above L, we have

$$\frac{Q_{n+2} - Q_{n+1}}{Q_n} S_n + \frac{Q_{n+2} - Q_n}{Q_{n+2}} S_{n+1} - \frac{Q_{n-1} - Q_n}{Q_{n+2}} S_{n+2} = 1, \quad (2')$$

$$\frac{S_{n+2}}{Q_{n+2}} + \frac{S_n}{Q_n} = \frac{S_{n+1}}{Q_{n+1}} + \frac{S_{n-1}}{Q_{n-1}}, \quad (3')$$

whence follows

$$1 = \frac{Q_{n+2}}{Q_n} S_n + \frac{Q_n}{Q_{n+2}} S_{n+2} + \frac{Q_{n+1}}{|Q_{n-1}|} S_{n-1} + \frac{|Q_{n-1}|}{Q_{n+1}} S_{n+1},$$

$$\geq 4 \text{ Mini. } (S_{n-1}, S_n, S_{n+1}, S_{n+2}).$$
(4')

The equality sign in (4), (4') holds good when and only when C_{n-1} , C_n, C_{n+1}, C_{n+2} coincide all together. Thus we have

Mini.
$$(S_{n-1}, S_n, S_{n+1}, S_{n+2}) > \frac{1}{4}$$

which is nothing but Minkowski's theorem in Fukasawa's form.

If C_{n-1} lie above L, then we take instead of C_n , C_{n+2} two consecutive

98

[Vol. 2,

lattice points C'_n , C'_{n+2} on the prolonged portion of $C_n C_{n+2}$, which intercept L. In this case $C'_n C'_{n+2} C_{n+1} C_{n-1}$ is also a parallelogram whose area is equal to 1, and

$$\frac{S'_{n+2}}{Q'_{n+2}} + \frac{S'_{n}}{Q'_{n}} = \frac{S_{n+1}}{Q_{n+1}} + \frac{S_{n-1}}{Q_{n+1}},$$

whence we get

Mini.
$$(S_{n-1}, S'_n, S_{n+1}, S'_{n+2}) < \frac{1}{4}$$
.

If we make use of the fact $Q_{n+2} - Q_{n+1} > Q_n$ only, we have from (2)

$$1 > \frac{Q_{n+2} - Q_{n+1}}{Q_n} S_n + \frac{Q_{n+2} - Q_n}{Q_{n+1}} S_{n+1} > S_n + S_{n+1},$$

whence Mini. $(S_n, S_{n+1}) < \frac{1}{2}$;

this is a precise form of Tchebycheff's theorem, which corresponds to Vahlen's theorem in the theory of continued fraction.

In the second case above treated, where C_{n-1} , C_{n+1} , C_{n+2} lie below L, while C_n above L, we can obtain Mini. $(S_{n-1}, S_n, S_{n+1}, S_{n+2}) < \frac{1}{4\frac{1}{2}}$, if we make use of the fact $Q_{n+2} = Q_{n+1} + Q_n + |Q_{n-1}| > 2Q_n$.