390 [Vol. 3,

111. On Transcendental Numbers.

By Shin-ichi Izumi.

Mathematical Institute, Tohoku Imp. University.

(Rec. June 23, 1927. Comm. by M. FUJIWARA, M.I.A., July 12, 1927.)

The following theorem was proved by Kempner.1)

Let a be an integer greater than 1; $a_n(n=0, 1, 2,)$ any positive or negative integer smaller in absolute value than a fixed arbitrary number M, but only a finite number of the a_n equal to 0, then

$$f(x) = \sum_{n=0}^{\infty} \frac{a_n}{a_n} x^n$$
, $a_n = a_n^{2^n}$,

represents a transcendental number for any rational number x.

As Blumberg²⁾ has shown, the condition that only a finite number of coefficients a_n shall be zero may be removed, so that

$$f_1\left(\frac{p}{a}\right) = \sum_{n=0}^{\infty} \frac{a_{\sigma_n}}{a'_n} \left(\frac{p}{a}\right)^n, \qquad a'_n = a^2$$

represents a transcendental number, when $\sigma_1 < \sigma_2 < < \sigma_n \rightarrow \infty$.

He proved this theorem by distinguishing between two cases, where

- (1) for every n there are two consecutive σ_n 's greater than n and differing by more than k,
- (2) after a certain point, the difference between two consecutive σ_n 's is less than or equal to k.

In the following lines I will give a generalization of Kempner-Blumberg's theorem, which can be proved without distinction of the two cases.

Our theorem runs as follows:

The integral transcendental function

$$f(x) = \sum_{n=0}^{\infty} \frac{a_n}{a^{\sigma_n}} x^n,$$

Trans. American Math. Soc., 17 (1916).
 Bulletin American Math. Soc., 32 (1926).

where a denotes an integer greater than 1 and a_n an integer $< a^n$ in absolute value, represents a transcendental number for any rational x, when the following conditions (A) are satisfied for every k:

$$\lim_{n\to\infty}\frac{\sigma_n}{n}=\infty,$$

$$\frac{\sigma_{m_1}+\sigma_{m_2}+\ldots\ldots+\sigma_{m_i}}{\sigma_{n_1}+\sigma_{n_2}+\ldots\ldots+\sigma_{n_i}}>1+\delta_k, \quad (\delta_k>0),$$

for $\sigma_{m_1} + \sigma_{m_2} + \dots + \sigma_{m_n} > \sigma_{n_1} + n_2 + \dots + \sigma_{n_j}$ where some σ_m 's (and also σ_n 's) may be equal and $\sigma_m \neq \sigma_n$ $(i, j \leq k)$, and there is only one set $(\sigma_{n_1}, \sigma_{n_2}, \dots, \sigma_{n_i})$ whose sum is largest, but less than σ_n .

To prove this we suppose that f(p/q) is not transcendental, then z=f(p/q) satisfies an algebraic equation with integral coefficients of the form

$$\varphi(z) = \sum_{\mu=0}^{k} A_{\mu} Z_{\mu} = 0.$$

We can show that this leads to a contradiction.

The conditions (A) are satisfied for $\sigma_n = 2^n$, so that Kempner-Blumberg's theorem follows immediately.

For $\sigma_n = [r^n]$, r > 1, where [x] represents the greatest integer contained in x, the conditions (A) are satisfied for k=1. Therefore

$$f_2\left(\frac{p}{q}\right) = \sum \frac{a_n}{a^{[r^n]}} \left(\frac{p}{q}\right)^n$$

represents an irrational number.

When $r > \frac{1+\sqrt{5}}{2}$, the conditions (A) are satisfied for k=2.

Therefore $f_2(p/q)$ is neither rational, nor a quadratic irrational.

For $r \ge 2$, $f_2(p/q)$ represents a transcendental number.