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101. Differential Geometry of Conics in the Projective
Space of Three Dimensions.

III. Differential invariant forms in the theory of a two-
parameter family of conics (second report).

By Akitsugu KAWAGUCHI.
(Rec. July 12, 1928. Comm. by M. FUJIWARA, M.L.A., July 12, 1928.)

4. Normalization of I. A two-parameter family of conics in the
projective space of three dimentions can be represented by the equations
in the parametric form

19 a=aul, u?), [=1(ul, u?),

when we adopt the coordinate system of a conic in space, introduced in
one of my previous papers?. For the system a we have already com-
pletely discussed in the first report, and we may use the differential
forms and the results in that report, because the present theory can be
got by a proper combination of those of a conie-family in a plane (theory
of a) and of a surface in space (theory for [). We must, therefore,
introduce other differential invariant forms connected with the family,
besides those introduced in the first report.

Put
(20) H= h,-adu"duj=1/1—§ 1YL T Ly | duidad,

which is an invariant differential form, where
G=—".(]11.l]22=.(,7122
and [;, [;; are the first and the second covariant derivatives of [ with

respect to the form gy du’dw’. Moreover we introduce the quantities A;
such that

(21) Bhg =0
and normalize the coordinates [ so that they satisfy the relation

since A% is multiplied by p~* corresponding to a change of proportional
facter: pl.

5. Another differential form. Consider the differential form of
the third order
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(23) conduiduidu = 1/_1 L dr—3 San,
then it follows
(24) = 1/G {3|I o, Tag, Ve | =11, Ty, o, Iﬁk|}duidufduk

and c;; is a symmetrical tensor. We can see that between A% and cg
the relations hold good
(25) h¥e,=0.9
Let us consider a surface enveloped by the planes [ (u!, 42) and its
point-coordinates be y (u!, u?), then

(26) D=1”L Il, IZH’ I=I‘l”t)’ 191’ pZH’
putting
A=€ﬂ ."—/—% (e=—sg'n G)

6. New vectors m, 3. I will now denote in the following the co-
variant derivatives of a quantity b with respect to the form A du*dui by
p;, then we get very easily

(27) Cijle = ——H I, L2, T | -

v G
It is not difficult to find out the relations

hi=9g=105=yl;=19y,
(28) { 9 t) ) D’d 9 ‘)‘A’l
Ciite =Yz = — izl «
For a new vector
(29) m=éh"" l,

the relations subsist :

(30): ym= ‘l—hjkljki)i =— l hjkc,;fk =0,

nm—»—h’fl,kt) ——h"h i=1,

hence

(30)2 my=0;
dually for a vector

@1) 3=y

1) See G. Fubini-E, Cech Geometria proiettiva differenziale, vol. I, Bologna,
1926, pp. 64-617.
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we have
(82) I3=1, 1;3=0, [3;=0.

By aid of these relations we can put

33 { T=cauh ™+ hign-+ i,
Y= —Cih*™Ym+ hiss + 79,
from which the two new differential forms
(34) pyduidu?, mdudu’
appear. These forms are both apolar to k¥, i.e.
(35) h"’puA= 0, h¥n;=0,
for 2m=h9;=2m+ h¥p;l, ete.

From (80) and (32)
f m; =k +n,h*,,

36
(36) l &:jin+p‘.”hmnq’
where
ki+2i=mi3+m5i=_aT(n13)=.Q,-,
37 { B ou -
nyg=my5+Lhi;, Pi=Dpii+ Lhi;,

since myy=Lhy+m;, MY=—nhPhg=—ny, etc.

7. Representability of h¥ by other quantities. In the general case
we may now assume that the three differential forms

giduidw?, cqma duidid, qydwiduw=(py+ my)duidu’
are mutually linearly independent; then the quantities 2% must be
linearly represented by g%, ¢%,a%;, ¥, i.e.
(38) ki=agi+ Bc¥ a¥, +1q¥,

but from (22), (25) and (85) @, 8 and 7 are determined by

1=a+pctua%, +1q7,
39) {

0=ac’ya™*+ Peucmara™n + 1¢%gu0"s
0=aq{ + Beiza™ g9+ rq:q%.

8. Equations of integrability (continued). Equations of integra-
bility for the differential equations (83) and (36) are

s Domh™+ P o+ Tl =0,
(40) { CijtkPim Dick, b+ Nicxkeny

—CijkToml™ + 7ATa'ck, o+ hiain=0,
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Casct DB™ + Dicr, O™ + icap?™ + CizenCiomph?Phmm = ";-R:;ié’”,

(€3]
— Cigct, D™ + g, O™+ Bt g™+ CoaeComphPh™ =%Ru:"‘,
I% 4 +n o) h”k = O ,
(42) { G+ epci Dl "
g, p+ Mo iichP* =0,
(43) [ JecPs™ + uci, o™ + MuciComphhmm =0,

L AP + Py, ™ —TyiCpmph PR m =0,
From (40) and (41) we get

Sttty = CrpcDioghPh7* + Pri SHE,
O iy = —CrpeTirghPTh* 4 Ty, HTE,

“b iy = ‘;—ququh'k + ém(,, oh™+ p,@ﬁmh"‘ + CryiCoophh7®,

sty = %Réo"r’% 7y, M7+ TR+ CraciCiopthPhT,

that is the quantities %;, 4;, 7, #;, are all represented by other
quantities. It follows moreover from (41)

2311;(1; »+ Ori— ) hipp + Rri(Mip— 1) =0,
for r=p this relation becomes

23"2)(1'. »F Dri— )y + Rrci(Tpp—Dipp) =0.
From this relation and
(45) hP9¢ 5 ;=0
we have

(46) (py—my5) duwidu? =1 fhﬁ' mdw ﬁlﬁd u’ , H=hnhs—h?,
H C2ic1, mdu' h'zddu’
therefore p;; and 7;; can de represented by gi, 9y, @i, Cik.

9. The fundamental theorem. By the above results we can prove
the fundamental theorem :

When the four differential forms gidu'dw!, qyduidw’, azdu‘duwdu*
and cadu'duidu* are given, between which the conditions for integrability
above mentioned hold good, then the two-parameter family of comics
having those forms as the fundamental forms in the projective space of
three dimensions is uniquely determined, expect for projective transfor-
mations.




