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1. In the TShoku Mathematical Journal, 33 (1930) Mr. Izumi
treat o the condition or the convergency of the series summable
(C, ), and gave a simple proo or Hardy-Landau’s theorem in the
ollowing generaliz orm:

If t series mmable (C, r) (r 0), and

lim inf (s-s) O, for m > n, n--), 1,
n

where s, denotes the m of the first n+ 1 terms of the sers,
series convergent.

In the proof for the case r= 2, he started from

-no (m-n)(m-n+1)

W_=2 -n: + (m-n)(m-n- 1)S)

If we ke instead of V.,

where m-n is an even number, the proof will be much simpler.
For the general case, where r denotes any positive integer, we

have to put

2=%,-
(m=n+rl)

2. In the following lines I wish to ve the prf of the
rem in more general form.

Suppose that the series a is summable (C, r) the sum s,
where r denotes any positive integer. Then it is well known that

lim S’/(*)=s

where =Sg"-’) + S[-"+ S"-"’ + +"-’) =1, 2, r),
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and S(=s is the sum of the first n + 1 terms of the series.

,...) (+) s=f(n)Let us now put

df(n) f(n)=f(n+ 1) -f(n)
Jf(n) J-f(n + 1) J-f(n) (p

_
2)

then we get limf(n)/n=0

and f(n)=.-) ’+’,+ -,,_, s (= 1, 2, r),
(n)=s+.-s,

so that the theorem A is nothing but a spial ce M=O of the
following threm

B. ff f(n)=o(n’),

and lim inf (Jf(m) -Jf(n)) -M, for m> n, n-, m-m-- 1,

where M denotes any constant 0, then

lim sup J’f(n) M.

3. To prove the theorem B we need the following lemma"

LEMMA. Let _)f(x)-f(x + )-f(x)
r--I(._ff() (_)f(+ e)

then for a potive in.get 1 we have
r(/--1)

(a._)f(x) k,J(a)f(x +) (1)

wre the coecien k, are potive integers depeing on l, a

Putting $=1, we will prove this lemma by the mathematical
induction.

For the case r=l, we have

,_f(x)=+l) f()
f(x) +f(x e 1) + + f(x + l- 1).

Thus kx=l and (2) holds good.
Now suppose that (1) and (2) hold good for a positive integer

r, then we have
r(/--1)

-,)f(x) k,f(x+ ),

_,f(x+ l)= k,f(x l + )
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so that

that is

.+1,=f(x)= k,.(,"f(x +l + ;O -,"f(x + ) )

r(/--1) +/--1

k, +(x+), (3)

(+D{-D
r+l +I={()= +. (+), (4)

where + is the sum of or some values of and hence a
positive integer; putting "+(z+/)l in (3) and (4) we get

(+1)(-D (-D
Hence (1) and (2) hold good or +1. The lemma is thus proved.

4. Poof of Tko . By the lemma we have

r(-D

and f() ,_,,f(n) (()-(n+))2 =n+.
By the hypothesis lim inf (rf(m) f(n) ) M

we can find an integer N and a positive number 8, or any assigned
positive number , such that

/(n+ ;,)- Zf(n) > (M+ 0,

f(m)-f(n+ ) > (M+d,
m-n20, nN, m/nl+8.

Therefore, as x> 0, we get
r(z-1)

,-)f(n)-lf(n) > -(M+O ,
so that f(n) (M+ ) +
and similarly f(m) > (M+) +l-%=)f(n)

=n+ rl n> N (m- n)/n 8

Now let us take =(m-n)/r=[nS/r] (integral part of
then by the hyhesis we have

f(n+ H) o(l( + )9 o(19 ( 0, 1, 2, r),
O

so that /a.=of( )= ( 1)’-()f(n+ pl) o(Ir).
p=0

1) 2) Compare the left-hand sides with U(,, and (-IY-lU

_
L in 1.
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Thus we get lira sup f():M+,
lim inf JO"(m) 3>_ -(M+ e),

that is lim sup ,"f(n) M+

Since s may be as small as we please, we have
lim sup ,"f(n) i<: M.

Thus the proof is completed.
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