90. Analytic Proof of Blaschke's Theorem on the Curve of Constant Breadth, II.

By Matsusaburo Fujiwara, m.I.a.
Mathematical Institute, Tohoku Imperial University.
(Comm. Oct. 12, 1931.)

In the former paper with the same title, this Proceedings 3, 1927, I have given an analytic proof of Blaschke's theorem:

The Reuleaux triangle consisting of three circular arcs of radius a is a curve of constant breadth a with minimum area.

There I have only sketched the main line of proof and left untouched the proof of the fact, that we can determine A and B such that

$$
\begin{array}{llc}
L(\theta)+a \leqq 0 & \text { for } & 0 \leqq \theta<\frac{\pi}{3}, \\
L(\theta)+a \cos \left(\frac{\pi}{3}-\theta\right) \geqq 0 & \text { for } & \frac{\pi}{3} \leqq \theta<\frac{2 \pi}{3}, \\
L(\theta)+a(1+\cos \theta) \leqq 0 & \text { for } & \frac{2 \pi}{3} \leqq \theta<\pi,
\end{array}
$$

where

$$
L(\theta)=\int_{0}^{0} \rho(\varphi) \sin (\theta-\varphi) d \varphi+A \cos \theta+B \sin \theta-a .
$$

When I recently informed my proof to Mr. Morimoto, he remarked me a slight error in it. So I will give here the corrected proof in detail.

Determining A and B such that

$$
\begin{array}{lll}
0=L(\theta)+a=L(\theta)+a \cos \left(\frac{\pi}{3}-\theta\right) & \text { for } & \theta=\frac{\pi}{3}, \\
0=L(\theta)+a \cos \left(\frac{\pi}{3}-\theta\right)=L(\theta)+a(1+\cos \theta) & \text { for } & \theta=\frac{2 \pi}{3},
\end{array}
$$

and putting these values in $L(\theta)$, we get

$$
\begin{aligned}
L(\theta)= & -a-\frac{a}{\sqrt{3}} \sin \left(\frac{\pi}{3}-\theta\right)+\int_{0}^{\theta} \rho(\varphi) \sin (\theta-\varphi) d \varphi \\
& +\frac{2}{\sqrt{3}} \sin \left(\frac{\pi}{3}-\theta\right) \int_{0}^{\frac{2 \pi}{3}} \rho(\varphi) \sin \left(\frac{2 \pi}{3}-\varphi\right) d \varphi \\
& -\frac{2}{\sqrt{3}} \sin \left(\frac{2 \pi}{3}-\theta\right) \int_{0}^{\frac{\pi}{3}} \rho(\varphi) \sin \left(\frac{\pi}{3}-\varphi\right) d \varphi .
\end{aligned}
$$

In the case $\frac{\pi}{3}<\theta<\frac{2 \pi}{3}$, we can transform $L(\theta)+a \cos \left(\frac{\pi}{3}-\theta\right)$ into the form

$$
\begin{aligned}
& -\frac{2}{\sqrt{3}} \sin \left(\frac{2 \pi}{3}-\theta\right) \int_{\frac{\pi}{3}}^{0} \rho(\varphi) \sin \left(\varphi-\frac{\pi}{3}\right) d \varphi \\
& -\frac{2}{\sqrt{3}} \sin \left(\theta-\frac{\pi}{3}\right) \int_{\theta}^{\frac{2 \pi}{3}} \rho(\varphi) \sin \left(\frac{2 \pi}{3}-\varphi\right) d \varphi \\
& +\frac{2 a}{\sqrt{3}} \sin \theta-a
\end{aligned}
$$

If we observe that $\rho(\varphi) \leqq a$, we have

$$
L(\theta)+a \cos \left(\frac{\pi}{3}-\theta\right)>0 \quad \text { for } \quad \frac{\pi}{3}<\theta<\frac{2 \pi}{3}
$$

Next consider the case $0<\theta<\frac{\pi}{3}$.
Since $L(\theta)+a$ depends on the curve of constant breadth C represented by $\rho=\rho(\varphi)$, we denote it by $F(\theta, \rho(\varphi))$ or $F(\theta, C)$.

If we denote by C^{\prime} the oval $\rho=\rho(\pi+\varphi)$, which is identical with C, but rotated through the angle π, we have

$$
\begin{gathered}
F(\theta, C)+F\left(\theta, C^{\prime}\right)=F(\theta, \rho(\varphi))+F(\theta, \rho(\varphi+\pi)) \\
=a\left(1-\frac{2}{\sqrt{3}} \sin \left(\frac{2 \pi}{3}-\theta\right)\right)<0 \\
\rho(\varphi)+\rho(\varphi+\pi)=a
\end{gathered}
$$

for
Therefore at least one of $F(\theta, C), F\left(\theta, C^{\prime}\right)$ must be <0, for $0<\theta<\frac{\pi}{3}$.

Finally in the case $\frac{2 \pi}{3}<\theta<\pi$, we can transform $L(\theta)+a(1+\cos \theta)$ into the form $F(\theta, \rho(\psi))$ by putting $\pi-\theta=\theta, \psi=\pi-\varphi$.

If we observe that for $0<\theta<\frac{\pi}{3}$
and

$$
F(\theta, \rho(\varphi))+F(\theta, \rho(\pi+\varphi))
$$

$$
F(\theta, \rho(\psi))+F(\theta, \rho(\pi+\psi))
$$

are both equal to $\quad a\left(1-\frac{2}{\sqrt{3}} \sin \left(\frac{2 \pi}{3}-\theta\right)\right)$,
consequently

$$
G=F(\theta, \rho(\varphi))-F(\theta, \rho(\pi-\varphi))
$$

is equal to

$$
-\{F(\theta, \rho(\pi+\varphi))-F(\theta, \rho(\pi-(\pi+\varphi)))\}
$$

that is, G changes its sign when φ is changed into $\varphi+\pi$, we can conclude the existence of a constant $\alpha(0<\alpha<\pi)$ such that

$$
F(\theta, \rho(\varphi+\alpha))-F(\theta, \rho(\pi-\varphi-\alpha))=0 .
$$

In this case, it is also true that at least one of $F(\theta, \rho(\varphi+\alpha))$, $F(\theta, \rho(\varphi+\alpha+\pi))<0$ for $0<\theta<\frac{\pi}{3}$.

Assume for example $F(\theta, \mu(\varphi+\alpha))<0$.
Then

$$
F(\theta, \rho(\pi-\varphi-\alpha)) \text { is also }<0 \text { for } 0<\theta<\frac{\pi}{3}
$$

or

$$
L(\theta)+a(1+\cos \theta)<0 \quad \text { for } \quad \frac{2 \pi}{3}<\theta<\pi
$$

Thus, by bringing the given oval into the position $\rho=\rho(\varphi+\alpha)$ by rotating through the angle α, and comparing this with the Reuleaux triangle, we have the relation

$$
\begin{array}{llc}
L(\theta)+a<0 & \text { for } & 0<\theta<\frac{\pi}{3} \\
L(\theta)+a \cos \left(\frac{\pi}{3}-\theta\right)>0 & \text { for } & \frac{\pi}{3}<\theta<\frac{2 \pi}{3} \\
L(\theta)+a(1+\cos \theta)<0 & \text { for } & \frac{2 \pi}{3}<\theta<\pi
\end{array}
$$

