PAPERS COMMUNICATED

17. On the Expansion of an Integral Transcendental Function of the First Order in Generalized Taylor's Series.

By Satoru Takenaka.

Shiomi Institute, Osaka.
(Comm. by M. Fujiwara, m.i.a., March 12, 1932)

1. In my previous paper ${ }^{1}$ I have proved the following theorem: Theorem A. Let $\left\{\alpha_{n}\right\}$ be a set of points such that

$$
\varlimsup_{n=0}\left|\alpha_{n}\right|=L<\infty
$$

Then any function $\phi(z)$, regular and analytic for $|z|<r$, can be expanded in one and only one way into the series of the form

$$
\begin{equation*}
\phi(z)=\sum_{n=0}^{\infty} c_{n} z^{n} e^{\bar{\sigma}_{n}} \tag{1.1}
\end{equation*}
$$

which converges absolutely and uniformly for $|z| \leqq r_{0}<\min \left(r, \frac{1}{e L}\right)$.
Let us define a sequence $\left\{p_{n}(z)\right\}$ of polynomials by
(1. 2)

$$
p_{0}(z)=1, \quad p_{n}(z)=\int_{a_{0}}^{z} \int_{a_{1}}^{t_{1}} \cdots \ldots \int_{\alpha_{n-1}}^{t_{n-1}} d t_{n} d t_{n-1} \cdots \ldots d t_{1}, \quad(n \geq 1)
$$

which satisfy the equalities:

$$
p_{n}^{(\nu)}\left(\alpha_{\nu}\right)=\left\{\begin{array}{lll}
0 & \text { for } \nu \neq n, \tag{1.3}\\
1 & \text { for } \nu=n,
\end{array}\right.
$$

and put

$$
p_{n}(z)=\sum_{\nu=0}^{n} \frac{k_{k}^{(n)}}{\nu!} z^{\nu}, \quad(n=0,1,2, \ldots \ldots),
$$

and define a sequence $\left\{\pi_{n}(z)\right\}$ of polynomials by

$$
\pi_{n}(z)=\sum_{\nu=0}^{n} k_{v}^{(n)} z^{\nu}, \quad(n=0,1,2, \ldots \ldots) .
$$

Then it can easily be shown that
(1. 4)

$$
\left\{\begin{array}{l}
p_{n}(z)=\frac{1}{2 \pi} \int_{|\xi|=1} \pi_{n}(\zeta) e^{z \bar{\zeta}}|d \zeta|, \\
p_{n}^{(\nu)}\left(\alpha_{\nu}\right)=\frac{1}{2 \pi} \int_{|\zeta|=1} \pi_{n}(\zeta) \bar{\zeta}^{\nu} e^{\alpha} \nu^{\bar{\zeta}}|d \zeta|, \quad(n, \nu=0,1, \ldots \ldots),
\end{array}\right.
$$

[^0] integral transcendental function of order $\rho \leqq 1$, Proc. 7 (1931), 134.
so that, from the equalities (1.3),
\[

\frac{1}{2 \pi} \int_{|z|=1} \pi_{n}(z) \bar{z}^{\bar{\nu}} e^{\alpha, \bar{z}}|d z|=\left\{$$
\begin{array}{lll}
0 & \text { for } & \nu \neq n, \\
1 & \text { for } & \nu=n,
\end{array}
$$\right.
\]

from which we see that the sequence of polynomials

$$
\pi_{n}(z), \quad(n=0,1,2, \ldots \ldots)
$$

and the sequence of functions

$$
z^{n} e^{\bar{\alpha}} n^{z}, \quad(n=0,1,2, \ldots \ldots)
$$

are each other biorthogonal on $|z|=1$.
Now, in Theorem A, let us put $r=1+\varepsilon$ (ε being an arbitrary small positive constant) and $L<e^{-1}$. Then the series of the right hand side of (1.1) converges absolutely and uniformly for $|z| \leqq 1$.

Therefore multiplying the both sides by $\frac{1}{2 \pi} \pi_{n}(z)$ and integrating term by term, we get

$$
c_{n}=\frac{1}{2 \pi} \int_{|z|=1} \phi(z) \overline{\pi_{n}(z)}|d z|, \quad(n=0,1,2, \ldots \ldots)
$$

from which we can state the theorem :
Theorem I. Let $\left\{\alpha_{n}\right\}$ be a set of points such that

$$
\varlimsup_{n=\infty}\left|\alpha_{n}\right|=L<\frac{1}{e}
$$

Then any function $\phi(z)$, regular and analytic for $|z|<r,(r>1)$ can be expanded in one and only one way into the series of the form

$$
\begin{equation*}
\phi(z)=\sum_{n=0}^{\infty} c_{n} z^{n} e^{\bar{\alpha}} n^{z}, \quad c_{n}=\frac{1}{2 \pi} \int_{|z|=1} \phi(z) \overline{\pi_{n}(z)}|d z|, \tag{1.5}
\end{equation*}
$$

which converges absolutely and uniformly for $|z| \leqq r_{0}<\min \left(r, \frac{1}{e L}\right)$, where $\left\{p_{n}(z)\right\}$ and $\left\{\pi_{n}(z)\right\}$ are defined by (1.2) and (1.4) respectively.
2. In (1.5), if we put

$$
\phi(z)=e^{\bar{z} z}, \quad(x \text { being any complex number })
$$

we have (from (1.4))

$$
c_{n}=\frac{1}{2 \pi} \int_{|z|=1} e^{\bar{z} z} \overline{\pi_{n}(z)}|d z|=\overline{p_{n}(x)}, \quad(n=0,1,2, \ldots \ldots)
$$

Whence we get
or

$$
\begin{aligned}
& e^{\bar{x} z}=\sum_{n=0}^{\infty} \overline{p_{n}(x)} z^{n} e^{\bar{\alpha} n^{z}} \\
& e^{x \bar{z}}=\sum_{n=\infty}^{\infty} p_{n}(x) z^{n} e^{\alpha} n^{\bar{z}}
\end{aligned}
$$

which converges absolutely and uniformly for $|z| \leqq r_{0}<\frac{1}{e L}$.
For the convenience sake let us write $\left\{\sigma_{n}\right\}$ in the place of $\left\{a_{n}\right\}$ under the condition that

$$
\varlimsup_{n=\infty}\left|\sigma_{n}\right|=l<\frac{1}{e} .
$$

Then we have
(2. 1)

$$
e^{x \bar{z}}=\sum_{n=0}^{\infty} p_{n, 0}(x) \cdot \bar{z}^{n} e^{\sigma_{n} \overline{\bar{z}}}, \quad p_{n, 0}(x)=\int_{\sigma_{0}}^{x} \int_{\sigma_{1}}^{t_{1}} \cdots \ldots . \int_{\sigma_{n-1}}^{t_{n-1}} d t_{n} d t_{n-1} \ldots \ldots d t_{1},
$$

which converges absolutely and uniformly for $|z| \leqq r_{0}<\frac{1}{e l}$.
Again let us put

$$
\bar{z}=\frac{1}{\zeta} \quad \text { and } \quad \sigma_{n}=\sigma a_{n}, \quad(\sigma>0, n=0,1,2, \ldots \ldots)
$$

Then (2.1) becomes as follows:
(2. 2)

$$
\frac{1}{\zeta} e^{\frac{x}{\zeta}}=\sum_{n=0}^{\infty} p_{n, 0}(x) \frac{1}{\zeta^{n+1}} e^{\frac{a a_{n}}{\zeta}}
$$

which converges absolutely and uniformly for $|\xi| \geq r^{\prime}>e l$ (when $l=0$, r^{\prime} can take any finite value).

If $f(z)$ be an integral transcendental function of type σ and of the first order, the function defined by

$$
f^{*}(z)=f\left(\frac{z}{\sigma}\right)
$$

is an integral transcendental function of type 1 and of the first order.
Therefore if we put

$$
\begin{gathered}
f^{*}(z)=\sum_{n=0}^{\infty} \frac{a_{n}}{n!} z^{n}, \\
\text { and } \quad \psi(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, \quad f^{*}(z)=\frac{1}{2 \pi i} \int_{||5|=r} \psi(\zeta) \frac{1}{\zeta} \frac{e^{\frac{z}{5}}}{e^{5}} d \zeta, \quad(r<1) .
\end{gathered}
$$

and

$$
\text { we can easily show that } \psi(z) \text { is regular and analytic for }|z|<1 \text {. }
$$

Since $e l<1$, we can take $r^{\prime}=1-\delta<e l$ (δ being a positive constant <1).

Now, multiplying the both sides of (2.2) by $\frac{1}{2 \pi i} \psi(\zeta)$ and integrating term by term, we get
(2. 3) $f^{*}(x)=\sum_{n=0}^{\infty} p_{n, \sigma}(x) \cdot \frac{1}{2 \pi i} \int_{|| |=1-\delta} \psi(\zeta) \frac{1}{\zeta^{n+1}} e^{\frac{\sigma \alpha_{n}}{\zeta}} d \zeta=\sum_{n=0}^{\infty} f^{*(n)}\left(\sigma \alpha_{n}\right) p_{n, o}(x)$ which converges absolutely for any finite value of $|x|$.

On the other hand we have, putting $x=\sigma z$,
(2. 4) $\quad f^{*}(\sigma z)=f(z), \quad f^{*(n)}\left(\sigma \alpha_{n}\right)=\frac{1}{\sigma^{n}} f^{(n)}\left(\alpha_{n}\right), \quad(n=0,1,2, \ldots \ldots)$.
and moreover we can easily show that
(2. 5)

$$
\begin{aligned}
p_{n, \sigma}(\sigma z)=\int_{\sigma \alpha_{0}}^{\sigma z} \int_{\sigma \alpha_{1}}^{t_{1}} \ldots \ldots \int_{\sigma \alpha_{n-1}}^{t_{n-1}} d t_{n} d t_{n-1} \ldots \ldots d t_{1}= & \sigma^{n} p_{n}(z), \\
& (n=0,1,2, \ldots \ldots) .
\end{aligned}
$$

From (2.3), (2.4) and (2.5) we can conclude that
Theorem II. Let $\left\{a_{n}\right\}$ be a set of points such that

$$
\varlimsup_{n=\infty}\left|\alpha_{n}\right|=L<\frac{1}{e \sigma}, \quad(\sigma>0)
$$

Then any integral transcendental function of type σ and of the first order can be uniquely expanded into the series of the form:

$$
f(z)=\sum_{n=0}^{\infty} f^{(n)}\left(\alpha_{n}\right) \cdot p_{n}(z)
$$

which converges absolutely and uniformly for any finite domain of z. ${ }^{1)}$
From this theorem, it follows that
Theorem III. Let $f(z)$ be an integral transcendental function of type σ and of the first order, and let α_{n} be a zero of $f^{(n)}(z)$.

Then if

$$
\varlimsup_{n=\infty}\left|\sigma_{n}-z_{0}\right|=L<\frac{1}{e \sigma},
$$

$f(z)$ should vanish identically, where z_{0} is a fixed point.

[^1]
[^0]: 1) S. Takenaka: On the distribution of zero points of the derivatives of an
[^1]: 1) The generalization of this theorem for a regular function in $|z|<R$ and for an integral transcendental function of any type and of any order will be given in my paper which will appear in another place.
