61. On the Relation between $M(r)$ and the Coefficients of a Power Series.

By Matsusaburô Fujiwara, m.i.a.
Mathematical Institute, Tohoku Imperial University, Sendai.
(Comm. June 13, 1932.)
The relations between the maximum modulus $M(r)=\operatorname{Max}_{k z \mid-r}|f(z)|$ of a power series

$$
f(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots \cdots
$$

and the order of $\left|a_{n}\right|$ are investigated by many authors, in the case of integral transcendental functions, and some analogous results are obtained in the case of a power series with the convergence radius 1 . Dr. Beuermann ${ }^{1)}$ has recently treated the latter case and given the following result.

If we denote
$\limsup _{r \rightarrow 1-0} \frac{\log \log M(r)}{\log \frac{1}{1-r}}=\mu, \quad \limsup _{n \rightarrow \infty} \frac{\log \log \left|a_{n}\right|}{\log n}=\sigma \quad(0<\sigma<1)$, then there exists the relation

$$
\mu=\sigma /(1-\sigma) .
$$

I will here add the following remark.
Theorem. Let

$$
\begin{aligned}
& \limsup _{r \rightarrow 1-0} \frac{\log M(r)}{(1-r)^{-\mu}}=x, \quad \limsup _{n \rightarrow \infty} \frac{\log \left|a_{n}\right|}{n^{\alpha}}=\beta, \\
& \quad(\mu>0, \quad x, \beta \text { finite } \neq 0, \quad 0<\alpha<1), \\
& \mu=\alpha /(1-\alpha), \quad x=\beta^{\frac{1}{1-\alpha}}(1-\alpha) \alpha^{\frac{\alpha}{1-\alpha}} .
\end{aligned}
$$

then
The method is not essentially new ; it is only an application of Laplace's method concerning the functions of large numbers.

Let $\quad \limsup _{n \rightarrow \infty} \frac{\log \left|a_{n}\right|}{n^{\alpha}}=\beta \quad(0<\alpha<1)$
be finite. Then for any $\varepsilon>0$, we can determine m such that

$$
\frac{\log \left|a_{n}\right|}{n^{\alpha}}<\beta+\varepsilon=\gamma
$$

i.e. $\quad\left|a_{n}\right|<e^{\tau n^{\alpha}} \quad$ for $\quad n \geqq m$,

1) Beuermann, Math. Zeits. 33 (1931).

No. 6.] On the Relation between $M(r)$ and the Coefficients of a Power Series. 221 consequently there exists a constant A such that

$$
\left|a_{n}\right|<A e^{\tau_{n}^{\alpha}} \quad \text { for all } n
$$

Then we have
or putting

$$
\begin{gathered}
M(r) \leqq \sum_{0}^{\infty}\left|a_{n}\right| r^{n}<A \sum_{0}^{\infty} e^{\tau n^{\alpha}} r^{n} \\
\log \frac{1}{r}=\tau \\
M(r)<A \sum_{0}^{\infty} \exp \left(\gamma n^{\alpha}-n \tau\right)
\end{gathered}
$$

The infinite series on the right hand side has the same order as

$$
J(\tau)=\int_{0}^{\infty} \exp \left(\gamma x^{x}-\tau x\right) d x
$$

when $r \rightarrow 1-0, \tau \rightarrow 0$. The order of $J(\tau)$ can be determined by Laplace's method in the following way. ${ }^{1)}$

Putting $x=\tau^{-\lambda} t, \lambda=\frac{1}{1-\alpha}$, we have

$$
J(\tau)=\tau^{\lambda} \int_{0}^{\infty} \exp \left(-\tau^{-\alpha \lambda}\left(t-\gamma t^{\alpha}\right)\right) d t
$$

Since the function $f(t)=t-\gamma t^{\alpha}$ takes minimum value $-\gamma^{\lambda}(1-\alpha) \alpha^{\alpha \lambda}$ at the point $x=\xi=(\gamma \alpha)^{\lambda}$, and $f^{n}(\xi)=(1-\alpha)(\gamma \alpha)^{-\lambda}$, we have

$$
\begin{gathered}
J(\tau) \sim \tau^{-\lambda} \sqrt{2 \pi} \exp \left(-\tau^{-\alpha \lambda} f(\xi)\right)\left(\tau^{-\alpha \lambda} f^{\prime \prime}(\xi)\right)^{-\frac{1}{2}} \\
\sim \sqrt{2 \pi} K^{\frac{1}{2}} \tau^{-\frac{1}{2}(2-\alpha) \lambda} \exp \left(\tau^{-\alpha \lambda} \gamma^{\lambda}(1-\alpha) \alpha^{\alpha \lambda}\right), \\
K=\left(\lambda(\gamma \alpha)^{\lambda}\right)^{\frac{1}{2}} .
\end{gathered}
$$

where
If we notice that $\tau=\log \frac{1}{r} \sim 1-r$, we have

$$
\frac{\log M(r)}{(1-r)^{-\alpha \lambda}}<r^{\lambda}(1-\alpha) \alpha^{\alpha \lambda}+o(1)
$$

Therefore we get

$$
\limsup _{r \rightarrow 1-0} M(r)(1-r)^{\alpha \lambda} \leqq r^{\lambda}(1-\alpha) \alpha^{\alpha \lambda},
$$

consequently, letting $\varepsilon \rightarrow 0$, we have

$$
\begin{equation*}
\limsup _{r \rightarrow 1-0} M(r)(1-r)^{\alpha \lambda} \leqq \beta^{\lambda}(1-\alpha) \alpha^{\alpha \lambda} \tag{2}
\end{equation*}
$$

Next let $\beta-\varepsilon=\delta$. Then from the assumption (1), there exists a sequence of integers

1) The case $\gamma=\frac{1}{\alpha}$ is treated in Polyà-Szegö, Aufgaben und Lehrsätze aus der Analysis, 2, p. 7, Aufgabe 45.

$$
n_{1}<n_{2}<n_{3}<\ldots \ldots, \quad n_{\nu} \rightarrow \infty
$$

such that

$$
\left|a_{n}\right|>e^{\delta_{n}{ }^{\alpha}} \quad \text { for } \quad n=n_{1}, n_{2}, \ldots \ldots .
$$

Denoting now

$$
\tau_{i}=\delta \alpha n_{i}^{\alpha-1}=\log \frac{1}{r_{i}}, \quad i=1,2,3, \ldots \ldots
$$

so that $n_{i}=(\delta a)^{\lambda} \tau_{i}^{-\lambda}$, we get for $n=n_{i}, \tau=\tau_{i}, r=r_{i}, i=1,2, \ldots \ldots$

$$
\begin{aligned}
M(r) & \geqq\left|a_{n}\right| r^{n}=\left|a_{n}\right| e^{-\tau n}>\exp \left(\delta n^{\alpha}-\tau n\right) \\
& >\exp \left(\delta(\delta \alpha)^{\lambda} \tau^{-\alpha \lambda}-(\delta \alpha)^{\lambda} \tau \cdot \tau^{-\lambda}\right) \\
& =\exp \left(\tau^{-\alpha \lambda}\left(\delta(\delta \alpha)^{\alpha \lambda}-(\delta \alpha)^{\lambda}\right)\right) .
\end{aligned}
$$

Whence follows that

$$
\frac{\log M(r)}{(1-r)^{-\alpha \lambda}}>\dot{\delta}^{\lambda}(1-\alpha) \alpha^{\alpha \lambda} \quad \text { for } \quad \tau=\tau_{1}, \tau_{2}, \ldots \ldots, r=r_{1}, r_{2}, \ldots \ldots
$$

or, letting $\varepsilon \rightarrow 0$,

$$
\begin{equation*}
\lim _{r \rightarrow 1-0} \sup \log M(r) \cdot(1-r)^{a \lambda} \geqq \beta^{\lambda}(1-\alpha) a^{\alpha \lambda} . \tag{3}
\end{equation*}
$$

From (2) and (3) it results

$$
\lim _{r \rightarrow 1-0} \sup \log M(r)(1-r)^{\alpha \lambda}=\beta^{\lambda}(1-\alpha) \alpha^{\alpha \lambda},
$$

whence follows the theorem immediately.
By the similar method, we can prove the following
Theorem. If

$$
\limsup _{r \rightarrow 1-0} \frac{\log M(r)}{(1-r)^{-1}}=\omega, \quad \limsup _{n \rightarrow \infty} \frac{\log \left|a_{n}\right|}{\log n}=\mu
$$

be both finite, then

$$
\mu \leqq \omega \leqq \mu+1
$$

If $\lim _{n \rightarrow \infty} \frac{\log \left|a_{n}\right|}{\log n}$ exists and is equal to μ, then $\mu+\frac{1}{2} \leqq \omega \leqq \mu+1$.
Suppose $\limsup _{n \rightarrow \infty} \frac{\log \left|a_{n}\right|}{\log n}=\mu$, then for any $\varepsilon>0$ we can determine m such that $\quad \log \left|a_{n}\right|<(\mu+\varepsilon) \log n$,
i.e. $\quad\left|a_{n}\right|<n^{\mu+\varepsilon} \quad$ for $\quad n \geqq m$.

Therefore there exists a constant A such that

$$
\left|a_{n}\right|<A n^{\mu+\varepsilon} \quad \text { for all } n
$$

Then

$$
M(r) \leqq \sum_{0}^{\infty}\left|a_{n}\right| r^{n}<A \sum_{0}^{\infty} n^{\mu+\varepsilon} r^{n} \sim A \Gamma(\mu+\varepsilon+1)(1-r)^{-\mu-\varepsilon-1} .
$$

Whence follows immediately

$$
\limsup _{r \rightarrow 1-0} \frac{\log M(r)}{(1-r)^{-1}} \leqq \mu+\varepsilon+1,
$$

No. 6.] On the Relation between $M(r)$ and the Coefficients of a Power Series. 223 consequently $\quad \limsup _{r \rightarrow 1-0} \frac{\log M(r)}{(1-r)^{-1}} \leqq \mu+1$.

Next, there exists a sequence of integers $n_{1}, n_{2}, n_{3}, \ldots \ldots \rightarrow \infty$ such that $\quad \log \left|a_{n}\right|>(\mu-\varepsilon) \log n \quad$ for $\quad n=n_{1}, n_{2}, n_{3}, \ldots \ldots$

If we denote $r_{i}=1-\frac{1}{n_{i}}, n_{i}=\frac{1}{1-r_{i}}$, then $r_{i} \rightarrow 1-0$ as $n_{i} \rightarrow \infty$, so that

$$
M(r) \geqq\left|a_{n}\right| r^{n}>\left(1-\frac{1}{n}\right)^{n} n^{\mu-\varepsilon}>\frac{1}{4}(1-r)^{-\mu+\varepsilon}
$$

$$
\text { for } \quad n=n_{i}, r=r_{i}, i=1,2,3, \ldots \ldots
$$

Therefore

$$
\lim _{r \rightarrow 1-0} \frac{\operatorname{sig} M(r)}{(1-r)^{-1}} \geq \mu .
$$

If $\lim _{n \rightarrow \infty} \frac{\log \left|a_{n}\right|}{\log n}=\mu$ exists, instead of \lim sup., then for any $\varepsilon>0$ we can determine m such that

$$
\log \left|a_{n}\right|>(\mu-\varepsilon) \log n \quad \text { for } \quad n \geqq m .
$$

Therefore

$$
M(r)^{2} \geq \sum_{0}^{\infty}\left|a_{n}\right|^{2} r^{2 n} \geq \sum_{m}^{\infty}\left|a_{n}\right|^{2} r^{2 n},
$$

and by putting $\quad r=1-\frac{1}{m}, \quad m=\frac{1}{1-r}$,

$$
\begin{aligned}
M(r)^{2} & \geqq m^{2(\mu-\varepsilon)}\left(r^{2 m}+r^{2 m+2}+\cdots \cdots\right)=(1-r)^{-2(\mu-8)} r^{2 m}\left(1-r^{2}\right)^{-1} \\
& =(1-r)^{-2(\mu-\varepsilon)-1}\left(1-\frac{1}{m}\right)^{2 m}(1+r)^{-1}>\frac{1}{16}(1-r)^{-2(\mu-\varepsilon)-1} .
\end{aligned}
$$

Whence follows $\quad \limsup _{r \rightarrow 1-0} \frac{\log M(r)}{(1-r)^{-1}} \geqq \mu+\frac{1}{2}+\varepsilon \quad$ for any $\varepsilon>0$,
i.e.

$$
\lim _{r \rightarrow 1-0} \sup \frac{\log M(r)}{(1-r)^{-1}} \geq \mu+\frac{1}{2}, \quad \text { q.e.d. }
$$

