28. On Hansen's Coefficients in the Expansions for Elliptic Motion.

By Yusuke Hagihara.

Astronomical Observatory, Azabu, Tokyo.
(Comm. by K. Hirayama, m.I.A., Mar. 12. 1935.)
Let r be the radius vector, a the semi-major axis, v the true anomaly, ζ the mean anomaly, u the eccentric anomaly, e the eccentricity, and m a positive integer, n an integer, positive or negative. Further put $z=E^{i \xi}$, where E is the base of Napier's logarithm and $i=\sqrt{-1}$. The coefficients $X_{j}^{n m}$ in the Laurent expansion of a function:

$$
\left(\frac{r}{a}\right)^{n} E^{i m v}=\left(\frac{r}{a}\right)^{n}(\cos m v+i \sin m v)=\sum_{j=-\infty}^{\infty} X_{j}^{n m} z^{j},
$$

are called Hansen's coefficients and were studied by Tisserand ${ }^{1)}$ with an elementary but complicated analysis. I propose to deduce the same result by a simpler mode of procedure.

The coefficients can be written

$$
X_{j}^{n m}=-\frac{1}{2 \pi i} \int_{C}^{(0+)}\left(\frac{r}{a}\right)^{n} t^{m} z^{-j-1} d z,
$$

where $t=E^{i v}$, by the famous Cauchy's theorem of residues in the theory of analytic functions, the contour of integration being taken so as to make a positive circuit round $z=0$ in the ring-domain excepting $z=0$ and $z=\infty$. Now write $s=E^{i v}$ and

$$
\omega=\frac{e}{1+\sqrt{1-e^{2}}}=\frac{1-\sqrt{1-e^{2}}}{e}<1,
$$

then Kepler's equation can be transformed into

$$
z=s E^{-\frac{e}{2}\left(s-\frac{1}{s}\right)} .
$$

By the well-known formula for elliptic motion, we have

$$
\frac{r}{a}=1-\frac{e}{2}\left(s+\frac{1}{s}\right)=\frac{1}{1+\omega^{2}}(1-\omega s)\left(1-\frac{\omega}{s}\right) .
$$

Hence

$$
\begin{aligned}
X_{j}^{n m}=\frac{1}{2 \pi i} \int_{C_{s}}^{(0+)} \frac{s^{m}}{\left(1+\omega^{2}\right)^{n+1}}(1-\omega s)^{n-m+1} & \left(1-\frac{\omega}{s}\right)^{n+m+1} \\
& \times E^{-\frac{j \omega}{1+\omega^{2}}\left(s-\frac{1}{s}\right)} \cdot s^{-j-1} d s,
\end{aligned}
$$

[^0]where the contour C_{s} is the transformed contour of C from the z-plane to the s-plane. The points $z= \pm 1$ are invariant in the transformation. There is no singularity besides the essential singularities at $s=0$ and $s=\infty$, except $s=\omega$ and $s=\frac{1}{\omega}$, of which either or both may be singular points.

After Hill ${ }^{2)}$ we introduce the Bessel function so that

$$
E^{\frac{j \omega}{1+\omega^{2}}\left(s-\frac{1}{s}\right)}=\sum_{p=-\infty}^{\infty} J_{p}\left(\frac{2 j \omega}{1+\omega^{2}}\right) \cdot s^{p} .
$$

Put $s=\omega \sigma$ and denote the transformed contour of C_{s} by C_{σ}, then

$$
\begin{aligned}
& X_{j}^{n m}=\sum_{p=-\infty}^{\infty} J_{p}\left(\frac{2 j \omega}{1+\omega^{2}}\right) \cdot X_{j p}^{n m}, \\
& X_{j p}^{n m}=\frac{(-1)^{n+m+1}}{\left(1+\omega^{2}\right)^{n+1}} \cdot \frac{\omega^{m+p-j}}{2 \pi i} \int_{C_{\sigma}}^{(0+)} \sigma^{p-n-j-2}(1-\sigma)^{n+m+1}\left(1-\omega^{2} \sigma\right)^{n-m+1} d \sigma .
\end{aligned}
$$

We deform the contour so that it makes a positive circuit round $\sigma=0$ and proceeds to the right along but beneath the real axis to $\sigma=+1$ and there describes a positive circuit round $\sigma=+1$ and returns towards $\sigma=0$ along but above the real axis to the starting point.

Suppose that $m+n+1>-1$ and also for the present that $p-n-j-2$ is complex and its real part is greater than -1 . Then $\sigma=0$ is a branch point and $\sigma=+1$ is an ordinary point in the integral for $X_{j p}^{n m}$. Hence we have along the contour C_{σ}

$$
X_{j p}^{n m}=\frac{(-1)^{n+m+1}}{\left(1+\omega^{2}\right)^{n+1}} \cdot \frac{\omega^{m+p-j}}{2 \pi i}\left\{E^{2 \pi i(p-n-j-2)}-1\right\} \cdot \int_{0}^{1} \sigma^{p-n-j-2}(1-\sigma)^{n+m+1} .
$$

By Euler's representation ${ }^{3)}$ of a hypergeometric function of Gauss, this is transformed into

$$
\begin{aligned}
& X_{j p}^{n m}= \frac{(-1)^{n+m+1}}{\left(1+\omega^{2}\right)^{n+1}} \cdot \frac{\omega^{m+p-j}}{2 \pi i}\left\{E^{2 \pi i(p-n-j-2)}-1\right\} \\
& \times \frac{\Gamma(p-n-j-1) \Gamma(n+m+2)}{\Gamma(p+m-j+1)} F(m-n-1, p-n-j-1, \\
&= \frac{(-1)^{n+m+1}}{\left(1+\omega^{2}\right)^{n+1}} \omega^{m+p-j} \cdot E^{\pi i(p-n-j-2)} \sin \pi(p-n-j-2) \\
& \times \frac{\Gamma(p-n-j-1) \Gamma(n+m+2)}{\Gamma} \\
& F\left(m-n-1, p-n-j-1, \omega^{2}\right), \\
&p+m-j+1) \\
&\left.p+m-j+1, \omega^{2}\right) .
\end{aligned}
$$

[^1] ductory Treatise on Dynamical Astronomy. (1918), p. 45.

If we use the formula $\frac{\sin \pi \xi}{\pi}=\frac{1}{\Gamma(\xi) \Gamma(1-\xi)}$, we have

$$
\begin{aligned}
X_{j p}^{n m}=(-1)^{p+m-j} \frac{\omega^{m+p-j}}{\left(1+\omega^{2}\right)^{n+1}} & \cdot \frac{\Gamma(n+m+2)}{\Gamma(-p+n+j+2) \Gamma(p+m-j+1)} \\
\cdot & F\left(m-n-1, p-n-j-1, p+m-j+1, \omega^{2}\right) .
\end{aligned}
$$

This result is true by the theory of analytic continuation for the values of $p-n-j-2$ with its real part less than or equal to -1 . Hence we have this expression for $X_{j p}^{n m}$ for all values of $p-n-j-2$ such that $p-n-j-2<0, \quad n+m+1>0$.

If $p-n-j-2>0, n+m+1>0$, then there is no singularity inside the above contour of integration and we have simply

$$
X_{j p}^{n m}=0 .
$$

If $p-n-j-2>0, n+m+1<0$, then a singularity occurs at $\sigma=1$. In a similar way to the above we get

$$
\begin{aligned}
X_{j p}^{n m}=\frac{\omega^{m+p-j}}{\left(1+\omega^{2}\right)^{n+1}}
\end{aligned} \cdot \frac{\Gamma(p-n-j-1)}{\Gamma(p+m-j+1) \Gamma(-n-m-1)}, \quad \begin{aligned}
& \\
& F\left(m-n-1, p-n-j-1, p+m-j+1, \omega^{2}\right) .
\end{aligned}
$$

However $\gamma-\alpha-\beta$ in the expression $F(\alpha \beta \gamma x)$ ought not to be negative. Hence by a famous formula ${ }^{3}$ of the hypergeometric functions:

$$
F(\alpha \beta \gamma x)=(1-x)^{\tau-\alpha-\beta} F(\gamma-\beta, \gamma-\alpha, \gamma, x),
$$

we transform it into

$$
\begin{aligned}
X_{j p}^{n m}=\frac{\omega^{m+p-j}\left(1-\omega^{2}\right)^{2 n+3}}{\left(1+\omega^{2}\right)^{n+1}} & \cdot \frac{\Gamma(p-n-j-1)}{\Gamma(p+m-j+1) \Gamma(-n-m-1)} \\
& \times F\left(p+n-j+2,-m-n-2, p+m-j+1, \omega^{2}\right) .
\end{aligned}
$$

When the exponents are all integers, then the hypergeometric functions contain only finite number of terms.

A similar treatment can be applied in the t-plane.

[^2]
[^0]: 1) F. Tisserand: Traité de Mécanique Céleste. T. 1 (1889), Chap. XV.
[^1]: 2) G. W. Hill: Collected Papers. Vol. 1, p. 221; or H. C. Plummer: An Intro-
[^2]: 3) L. Schlesinger: Einführung in die Theorie der gewöhnlichen Differentialgleichungen auf funktionentheoretischer Grundlage. (1922) s. 234.
 F. Klein: Vorlesungen über die hypergeometrischen Funktionen. (1933) s. 62 et suiv.
 E. T. Whittaker and G. N. Watson: A Course of Modern Analysis. (1927) Chap. XII and Chap. XIV.
