52. Displacements in a Manifold of Matrices, II.

By Akitsugu Kawaguchi.
Mathematical Institute, Hokkaido Imperial University, Sapporo.
(Rec. April 12, 1935. Comm. by M. Fujiwara, m.I.A., May 14, 1935.)

As a continuation of the previous paper ${ }^{1)}$ we introduce in the present paper some parameter matrices of displacement, which are invariant under the weight variations of a matrix, to which the displacement is to be applied.

1. The weight variation of a matrix $\bar{A}=\rho A$ transforms the parameter matrix $\Gamma(A)$ into

$$
\begin{equation*}
\bar{\Gamma}(A)=A \varphi+\Gamma(A) \tag{1}
\end{equation*}
$$

taking $\varphi=d \log \rho$. We consider the new parameter matrix $\wedge(A)$ which has the following form:

$$
\begin{equation*}
\wedge(A)=\Gamma(A)+A f(\Gamma, A) \tag{2}
\end{equation*}
$$

where $f(\Gamma, A)$ is a quantity depending on the parameter matrix Γ and A. We assume for the sake of simplicity that $f(\Gamma, A)$, considered as a function of Γ, is regular analytic in the neighbourhood of $\Gamma=0$. As Γ is homogeneous of the first dimension with respect to $A, f(\Gamma(A), A)$ must be homogeneous of zero-th dimension with respect to A. In order that the parameter matrix $\Lambda(A)$ may be invariant under transformation (1), it is necessary and sufficient that

$$
\bar{\Gamma}(A)+A f(\bar{\Gamma}, A)=\Gamma(A)+A f(\Gamma, A)
$$

that is
(3)

$$
\varphi+f(\Gamma+A \varphi, A)=f(\Gamma, A)
$$

for any value of φ. From (3) it follows that $f(\Gamma+A \varphi, A)$ must be a linear function of φ, and that the function $f(\Gamma, A)$ must satisfy the differential equation :

$$
\begin{equation*}
\frac{d}{d \varphi} f(\Gamma+A \varphi, A) \equiv \frac{\partial f(\Gamma, A)}{\partial \Gamma} \cdot A=-1 \tag{4}
\end{equation*}
$$

Putting $\Gamma=0$ we moreover get from (3)

$$
f(A \varphi, A)=-\varphi+f(0, A)
$$

where $f(0, A)$ can be an arbitrary but homogeneous function of zero-th dimension with respect to A and is independent of Γ. For this reason we may now put $f(0, A)=0$ without loss of generality. Then the function $f(\Gamma, A)$ should satisfy the functional equation:

$$
\begin{gather*}
f(A \varphi, A)=\varphi f(A, A) \tag{5}\\
f(\Gamma+A \varphi, A)=f(\Gamma, A)+f(A \varphi, A)
\end{gather*}
$$

Let $\psi(\Gamma, A)$ be an arbitrary but linear homogeneous function with respect to Γ, and $\psi(A, A) \neq 0$, then the general solution of (5) has the form

$$
\begin{equation*}
f(\Gamma, A)=\Phi(\Pi, A)-\frac{\psi(\Gamma, A)}{\psi(A, A)}, \tag{6}
\end{equation*}
$$

where $\Phi(\Pi, A)$ is an arbitrary function but to satisfy the relations

[^0]and
\[

$$
\begin{aligned}
\Phi(0, A) & =0, \quad \Phi\left(\rho^{2} \Pi, \rho A\right)=\Phi(\Pi, A), \\
\Pi & =\left(\left(\Gamma_{j}^{i} A_{l}^{k}-\Gamma_{l}^{k} A_{j}^{i}\right)\right),
\end{aligned}
$$
\]

being $\Gamma=\left(\left(\Gamma_{j}^{i}\right)\right), A=\left(\left(A_{l}^{k}\right)\right)$.
2. The parameter matrix $\Lambda(A)$ determined by such $f(\Gamma, A)$ not only satisfies the relation

$$
\begin{equation*}
f(\wedge, A)=0 \tag{7}
\end{equation*}
$$

but also is characterized by (7). For we have from (3)

$$
f(\wedge, A)=f(\Gamma+A f, A)=f(\Gamma, A)-f
$$

It is to be noticed that there exist also some invariant parameter matrices for (1) not of the form (2). For example, the parameter matrix

$$
\begin{equation*}
L(A)=\Gamma(A)-A \Gamma(A) A^{-11)} \tag{8}
\end{equation*}
$$

is invariant for (1) but not of the form (2). From (8) it follows

$$
\begin{equation*}
A^{-1} \cdot L=0 \tag{9}
\end{equation*}
$$

and
$L \cdot A=0$.
The parameter matrices characterized by the relations equivalent to (9) are

$$
\begin{align*}
& \wedge_{1}(A)=\Gamma(A)-\left(A^{-1} \cdot \Gamma\right) A \tag{10}\\
& \wedge_{2}(A)=\Gamma(A)-(\Gamma \cdot A) A
\end{align*}
$$

respectively. It has meaning therefore only in the family of parameter matrices having the form (2), that (7) is a characteristic property of the parameter matrix $\Lambda(A)$.
3. Let us now restrict ourselves to the special case, where $\Phi(I I, A) \equiv 0$, then it must be

$$
\begin{align*}
& \psi(\Gamma, A)=R(A) \cdot \Gamma, \quad \text { whence } \tag{11}\\
& f(\Gamma, A)=-\frac{R(A) \cdot \Gamma}{R(A) \cdot A}
\end{align*}
$$

As $f(\Gamma, A)$ must be homogeneous of zero-th dimension with respect to $A, R(A)$ is in general homogeneous of m-th dimension :

$$
\begin{array}{ll}
R_{A} \cdot A=m R, & \psi_{A}(A, A) \cdot A=(m+1) \psi(A, A), \tag{13}\\
\wedge_{A} \cdot A=\wedge, & f_{A}(\Gamma(A), A) \cdot A=0 .
\end{array}
$$

4. Let A denote a matrixor under the group of matrix transformations G :

$$
\begin{equation*}
V A W=\bar{A} \tag{14}
\end{equation*}
$$

and let the covariant differential ∇A be also a matrixor, then it will be shown that the parameter matrix Γ is tranformed as follows:

$$
\begin{equation*}
\bar{\Gamma}=V \Gamma W-d V A W-V A d W{ }^{2} \tag{15}
\end{equation*}
$$

From (15) we can get the transformation formula of the invariant parameter matrix $\Lambda(A)$:

$$
\text { where } \quad \begin{aligned}
\bar{\wedge} & =V \wedge W-d V A W-V A d W+(\bar{f}-f) V A W \\
\bar{f} & =-\frac{R(V A W)}{R(V A W) \cdot(V A W)} \cdot(V \Gamma W-d V A W-V A d W) \\
& =f-\frac{R(V A W)}{R(V A W) \cdot(V A W)} \cdot(V \wedge W-d V A W-V A d W),
\end{aligned}
$$

as $\Gamma=\Lambda-f A$. Hence

1) We assume here that A has an inverse matrix.
2) Loc. cit.

$$
\begin{align*}
\bar{\Lambda}= & (V A W-d V A W-V A d W) \tag{16}\\
& -\frac{R(V A W)}{R(V A W) \cdot(V A W)} \cdot(V \wedge W-d V A W-V A d W) V A W
\end{align*}
$$

Especially, when $R(A) \cdot A$ is invariant for G, it follows from $\boldsymbol{R}(\boldsymbol{A}) \cdot \wedge=\psi(\wedge)=0$ that

$$
\begin{align*}
\bar{\Lambda}= & (V A W-d V A W-V A d W) \tag{17}\\
& +\frac{1}{R(A) \cdot A}\left\{(A R(A)) \cdot\left(V^{-1} d V\right)+(R(A) A) \cdot\left(d W W^{-1}\right)\right\} V A W
\end{align*}
$$

5. In conclusion we add some examples.

Ex. 1. $\quad \psi(\Gamma, A)=A^{-1} \cdot \Gamma, \quad f=-\frac{1}{n} A^{-1} \cdot \Gamma$,
where n denotes the order of the matrix A. The parameter matrix

$$
\Lambda=\Gamma-\frac{1}{n}\left(A^{-1} \cdot \Gamma\right) A
$$

is characterized by $A^{-1} \cdot \Lambda=0$. The transformation formula of the parameter matrix is given by

$$
\bar{\Lambda}=(V \wedge W-d V A W-V A d W)+\frac{1}{n}\left(V^{-1} \cdot d V+d W \cdot W^{-1}\right) V A W
$$

from which follows

$$
\dot{\bar{\Lambda}}=\Lambda \cdot(W V)-A \cdot d(W V)+\frac{1}{n}\left(V^{-1} \cdot d V+d W \cdot W^{-1}\right) A \cdot(W V)
$$

whence the norm $\dot{\Lambda}$ of the parameter matrix is invariant for $V W=E$.
Ex. 2. $\quad \psi(\Gamma, A)=A \cdot \Gamma, \quad f(\Gamma, A)=-\frac{1}{A \cdot A} A \cdot \Gamma$,

$$
\Lambda=\Gamma-\frac{1}{A \cdot A}(A \cdot \Gamma) A
$$

whose characteristic property is $A \cdot \Lambda=0$. (16) reduces here to

$$
\grave{\Lambda}=V \wedge W-d V A W-V A d W
$$

$$
-\frac{A W V}{(A W V) \cdot(A W V)} \cdot\{\wedge W V-A(W d V+d W V)\} V A W
$$

which is for $W V=E$

$$
\bar{\Lambda}=V \wedge W-d V A W-V A d W
$$

Ex. 3. $\quad \psi(\Gamma, A)=\dot{\Gamma}, \quad f(\Gamma, A)=-\frac{\dot{\Gamma}}{\dot{A}}$,

$$
\dot{\Lambda}=\Gamma-\frac{\dot{I}}{\dot{A}} A
$$

whose characteristic property is $\dot{\Lambda}=0$ and whose transformation formula is $\quad \bar{\Lambda}=V \wedge W-d V A W-V A d W$

$$
-\frac{\Lambda \cdot(W V)-A \cdot d(W V)}{A \cdot(W V)} V A W
$$

For $W V=E$ it becomes

$$
\bar{\Lambda}=V \wedge W-d V A W-V A d W
$$

as $\dot{\Lambda}=0$.

[^0]: 1) A. Kawaguchi : Displacements in a manifold of matrices, I, Proc. 11 (1935), 39-42.
