37. A Note on the Singular Integral.

By Tatsuo KAWATA.

Mathematical Institute, Tohoku Imperial University, Sendai.

(Comm. by M. FUJIWARA, M.I.A., May 12, 1937.)

In the present paper,¹⁾ I will give a remark about the convergence of the integral

(1)
$$T_m(x;f) = (2\pi)^{-\frac{1}{2}} \int_{-\infty}^{\infty} K(x-u,m) f(u) du$$
.

Mr. Northrop²⁾ gave the necessary and sufficient conditions in terms of Fourier transform of K(x, m) for the convergence of $T_m(x; f)$ to f(x) in the mean L_2 for every function $f(x) \in L_2(-\infty, \infty)$.³⁾ And recently he treated the same problem and has given sufficient conditions for the convergence in the mean L_q in the case where f(x) is the Fourier transform in L_q of some function in L_p , and necessary conditions for the convergence in the mean L_p in the case where K(x, m) is the Fourier transform in L_p of some function in L_p and $f(x) \in L_q$, where $1 and <math>\frac{1}{p} + \frac{1}{q} = 1$. The cases $p = 1, q = \infty$ and $p = \infty, q = 1$ were not treated.

We here consider the case closely related to this.

H. Hahn⁴) has previously given the sufficient conditions for the convergence in the mean L_1 of $\int_{-\infty}^{\infty} K(x, u; m) f(u) du$ to $f(x) \in L_1$, but not in terms of Fourier transform.

Now consider the integral

$$f(x, m) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(u) \frac{\sin m(x-u)}{x-u} du = (2\pi)^{-\frac{1}{2}} \int_{-m}^{m} F(u) e^{ixu} du,$$

where F(x) is the Fourier transform of f(x), or f(x) is the Fourier transform of F(x). If $f(x) \in L_r(r)$ (r > 1), this converges in the mean L_r to f(x). Northrop's theorem may be considered as the extension of this fact. But this fact does not hold when $f(x) \in L_1$. Therefore it will be natural to modify the mode of convergence when $f(x) \in L_1$. Concerning the above fact, I had reached the result⁵⁾ that if $f(x) \in L_1$, then

(2)
$$\lim_{m\to\infty}\int_{-\infty}^{\infty}\phi\{f(x,m)-f(x)\}dx=0,$$

where $\phi(x) = \frac{|x|}{|\log |x||^{1+\epsilon}+1}$ ($\epsilon > 0$).

¹⁾ My former name was Tatsuo Takahashi.

²⁾ Northrop, Note on a singular integral, I, Bull. Amer. Math. Soc. 40 (1934); II, Duke Math. Journ., 2 (1936).

³⁾ Hereafter we write L_p instead of $L_p(-\infty, \infty)$.

⁴⁾ Hahn, Wiener Denkschriften, 93 (1917), 667.

⁵⁾ T. Takahashi, On the conjugate function of an integrable function and Fourier series and Fourier transforms, Sci. Rep. Tôhoku Imp. Univ. Ser. I. **25** (1936).

(3)
$$\lim_{m\to\infty}\int_{-\infty}^{\infty}\phi\big\{T_m(x;f)-f(x)\big\}dx=0.$$

But I could not succeed to prove (3) for all $f(x) \in L_1$, but for f(x) in a subclass of L_1 . Therefore the above Fourier transform theorem is not quitely generalized. Our theorem runs as follows:

Let xf(x) be absolutely integrable in $(-\infty, \infty)$ and there is a function $k(x, m) \in L_1$ such that

$$K(x, m) = (2\pi)^{-\frac{1}{2}} \int_{-\infty}^{\infty} k(u, m) e^{ixu} du$$

(4) $\int_{-\infty}^{\infty} |dk(x, m)| < M, M$ being independent of m,

(5) $\int_{-\infty}^{\infty} |k(x,m) - p(x,m)| dx \text{ is bounded and tends to zero as } m \to \infty,$ where p(x, m) = 1 for |x| < m and = 0 otherwise. Then

$$\lim_{m\to\infty}\int_{-\infty}^{\infty}\phi\big\{T_m(x;f)-f(x)\big\}dx=0,$$

where

$$\phi(x) = \frac{|x|}{|\log |x||^{1+\epsilon}+1}.$$

Denote

 $\psi(x) = \phi(x)$, for $0 \leq x \leq 1$ and $e^{\varepsilon} \leq x < \infty$, = linear for $1 \le x \le e^{\epsilon}$.

Then $\psi(x)$ is increasing and there exists a constant A such that

$$\phi(x) \leq A \psi(x)$$
, $\psi(x) \leq A \phi(x)$.

In the following lines A may differ on each occurrence, but represents always a constant. Since $\psi(2x) \leq A\psi(x)$, we have

$$\begin{split} \phi(x+y) &\leq A\psi(x+y) \leq A\psi\big\{2 \operatorname{Max}(x,y)\big\} \\ &\leq A\big\{\psi(2x) + \psi(2y)\big\} \leq A\big\{\psi(x) + \psi(y)\big\} \leq A\big\{\phi(x) + \phi(y)\big\} \,. \end{split}$$

Thus we get

(6)
$$\phi(x+y) \leq A \left\{ \phi(x) + \phi(y) \right\}.$$

Further we have

(7)
$$\phi(Ax) \leq A\phi(x)$$
.

From the assumption on K(x, m), we have

(8)
$$\int_{-\infty}^{\infty} K(x-u,m) f(u) \, du = (2\pi)^{-\frac{1}{2}} \int_{-\infty}^{\infty} f(u) \, du \int_{-\infty}^{\infty} k(v,m) e^{i(x-u)v} \, dv$$
$$= (2\pi)^{-\frac{1}{2}} \int_{-\infty}^{\infty} k(v,m) e^{ixv} \, dv \int_{-\infty}^{\infty} f(u) e^{-iuv} \, du \, .$$

The change of order of integration is legitimate from the absolute integrability of k(x, m) and f(x). Hence

[Vol. 13,

A Note on the Singular Integral.

$$\phi \Big\{ T_m(x;f) - f(x) \Big\}$$

= $\phi \Big\{ T_m(x;f) - \frac{1}{\pi} \int_{-\infty}^{\infty} f(u) \frac{\sin m(x-u)}{x-u} du$
+ $\frac{1}{\pi} \int_{-\infty}^{\infty} f(u) \frac{\sin m(x-u)}{x-u} du - f(x) \Big\}$

which does not exceed by (6)

$$A\phi\Big\{T_m(x;f)-\frac{1}{\pi}\int_{-\infty}^{\infty}f(u)\frac{\sin m(x-u)}{x-u}\,du\Big\}$$
$$+A\phi\Big\{\frac{1}{\pi}\int_{-\infty}^{\infty}f(u)\frac{\sin m(x-u)}{x-u}\,du-f(x)\Big\}$$
$$=AJ_1+AJ_2, \quad \text{say.}$$

By (2) we get

$$\lim_{m\to\infty}\int_{-\infty}^{\infty}J_2dx=0.$$

By (8), we have

$$J_{1} = \phi \left\{ \frac{1}{2\pi} \int_{-\infty}^{\infty} k(v, m) e^{ixv} dv \int_{-\infty}^{\infty} f(u) e^{-iuv} du - \frac{1}{2\pi} \int_{-m}^{m} e^{ixv} dv \int_{-\infty}^{\infty} f(u) e^{-iuv} du \right\}$$
$$= \phi \left\{ \frac{1}{2\pi} \int_{-\infty}^{\infty} \left(k(v, m) - p(v, m) \right) e^{ixv} dv \int_{-\infty}^{\infty} f(u) e^{-iuv} du \right\}.$$

But from (4) and (5), we see that $\lim_{|v| \to \infty} k(v, m) = 0$. Using this, we have

$$\begin{split} \int_{-\infty}^{\infty} \left(k(v,m) - p(v,m) \right) e^{ixv} dv \int_{-\infty}^{\infty} f(u) e^{-iuv} du \\ &= \frac{1}{ix} \int_{-\infty}^{\infty} e^{ixv} d\left\{ \left(k(v,m) - p(v,m) \right) \int_{-\infty}^{\infty} f(u) e^{-iuv} du \right\} \\ &= \frac{1}{ix} \int_{-\infty}^{\infty} e^{ixv} \left(k(v,m) - p(v,m) \right) dv \int_{-\infty}^{\infty} uf(u) e^{-iuv} du \\ &+ \frac{1}{ix} \int_{-\infty}^{\infty} e^{ixv} \left(\int_{-\infty}^{\infty} f(u) e^{iuv} dv \right) d\left(k(v,m) - p(v,m) \right) \\ &= O\left(\frac{1}{x}\right), \end{split}$$

from (4) and (5).

Let

$$\int_{-\infty}^{\infty} J_1(x) = \int_{-B}^{\infty} + \int_{-B}^{B} + \int_{-\infty}^{-B} = S_1 + S_2 + S_3, \text{ say } (B > 1).$$

Then by (9) and (7), we have

$$S_1 \leq A \int_B^\infty \phi\left(\frac{1}{x}\right) dx = A \int_B^\infty \frac{dx}{x (\log x)^{1+\epsilon} + 1}$$
,

which becomes as small as we please if we take B very large. The same holds also for S_3 .

$$S_{2} = \int_{-B}^{B} \phi \left\{ \frac{1}{2\pi} \int_{-\infty}^{\infty} \left(k(v, m) - p(v, m) \right) e^{ixv} dv \int_{-\infty}^{\infty} f(u) e^{-iuv} du \right\} dx$$
$$\leq AB \left(\int_{-\infty}^{\infty} |k(v, m) - p(v, m)| dv \right)$$

which tends to zero as $m \rightarrow \infty$. Combining these estimations we get the required result.