102. Notes on Fourier Series (I) : Riemann Sum.

By Shin-ichi Izumi and Tatsuo Kawata.
Mathematical Institute, Tohoku Imperial University, Sendai.
(Comm. by M. Fujiwara, m.I.A., Dec. 13, 1937.)

1. Let $f(x)$ be a periodic function with period 1 and let us write

$$
\begin{equation*}
f_{k}(x)=\frac{1}{k} \sum_{\nu=0}^{k-1} f\left(x+\frac{\nu}{k}\right) . \tag{1}
\end{equation*}
$$

If $f(x)$ is integrable in the Riemann sense, then

$$
\begin{equation*}
\lim _{k \rightarrow \infty} f_{k}(x)=\int_{0}^{1} f(t) d t \tag{2}
\end{equation*}
$$

Jessen ${ }^{1)}$ has shown that if $f(x)$ is integrable (in the Lebesgue sense), then

$$
\lim _{n \rightarrow \infty} f_{2^{n}}(x)=\int_{0}^{1} f(t) d t
$$

for almost all x. Ursell ${ }^{2)}$ has shown that (2) is not necessarily true for integrable function $f(x)$ for almost all x, and (2) holds almost everywhere when $f(x)$ is positive decreasing and of squarely integrable in $(0,1)$.

The object of the present paper is to prove the following theorem.
Theorem. Let $f(x)$ be integrable and

$$
\begin{equation*}
f(x) \sim \frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos 2 \pi n x+b_{n} \sin 2 \pi n x\right) . \tag{3}
\end{equation*}
$$

If $a_{n} \sqrt{\overline{l o g} n}$ and $b_{n} \sqrt{\log n}$ are Fourier coefficients of an integrable function, then (2) holds almost everywhere.

For the validity of (2) almost everywhere $f(x)$ can be discontinuous in a null set, for the condition of the theorem depends on the Fourier coefficients of $f(x)$ only. The condition of the theorem is satisfied when

$$
\sum_{n=2}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right) \log n<\infty .
$$

In this case, by the Riesz-Fischer theorem $a_{n} \sqrt{\log n}$ and $b_{n} \sqrt{\log n}$ are Fourier coefficients of squarely integrable function and then of integrable function.
2. Let us write

$$
c_{0}=\frac{1}{2} a_{0} ; \quad c_{n}=\frac{1}{2}\left(a_{n}-i b_{n}\right), \quad c_{-n}=\bar{c}_{n} \quad(n>1),
$$

[^0]then (3) becomes
$$
f(x) \sim \sum_{n=-\infty}^{\infty} c_{n} e^{2 \pi i n x}
$$

By (1)

$$
\begin{aligned}
f_{k}(x) & \sim \frac{1}{k} \sum_{\nu=0}^{k-1}\left\{\sum_{n=-\infty}^{\infty} c_{n} e^{2 \pi i \frac{\nu n}{k}} e^{2 \pi i n x}\right\} \\
& \sim \sum_{n=-\infty}^{\infty} c_{n} e^{2 \pi i n x}\left\{\frac{1}{k} \sum_{\nu=0}^{k-1} e^{2 \pi i \frac{\nu n}{k}}\right\} \sim \sum_{n=-\infty}^{\infty} c_{k n} e^{2 \pi i k n x},
\end{aligned}
$$

that is

$$
\begin{equation*}
f_{k}(x) \sim \frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n k} \cos 2 \pi k n x+b_{n k} \sin 2 \pi k n x\right) . \tag{4}
\end{equation*}
$$

Without loss of generality we can suppose that $a_{0}=0$. Thence we have to prove that

$$
\lim _{k \rightarrow \infty} f_{k}(x)=0
$$

almost everywhere.
3. By the W. H. Young theorem

$$
\frac{\alpha_{k}}{2}+\sum_{n=1}^{\infty} \frac{\cos 2 \pi n x}{\sqrt{\log (k n)}} \quad(k>1)
$$

is a Fourier series of a non-negative integrable function, which we denote by $\varphi_{k}(x)$, where α_{k} is taken such that

$$
\alpha_{k}, \quad \frac{1}{\sqrt{\log k}}, \quad \frac{1}{\sqrt{\log 2 k}}
$$

is a convex sequence and $\alpha_{k} \rightarrow 0$ as $k \rightarrow \infty$.
By the condition of the theorem there is an integrable function $g(x)$ such that

$$
g(x) \sim \sum_{n=2}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \sqrt{\log n}
$$

Since

$$
\varphi_{k}(k t) \sim \frac{a_{k}}{2}+\sum_{n=1}^{\infty} \frac{\cos 2 \pi k n t}{\sqrt{\log (k n)}},
$$

we have

$$
\left.\int_{0}^{1} \varphi_{k}(k t) g(t-x) d t \sim \sum_{n=1}^{\infty} a_{k n} \cos 2 \pi k n x+b_{k n} \sin 2 \pi k n x\right)
$$

By (4) we have

$$
f_{k}(x)=\int_{0}^{1} \varphi_{k}(k t) g(t-x) d t
$$

almost everywhere. Therefore it is sufficient to prove that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{0}^{1} \varphi_{k}(k t) g(t-x) d t=0 \tag{5}
\end{equation*}
$$

almost everywhere
4. If $g(t)$ is bounded, then there is an M such that $|g(x)| \leqq M$. In this case

$$
\begin{aligned}
\left|\int_{0}^{1} \varphi_{k}(k t) g(t-x) d t\right| & \leqq \int_{0}^{1} \varphi_{k}(k t)|g(t-x)| d t \leqq M \int_{0}^{1} \varphi_{k}(k t) d t \\
& =\frac{M}{k} \int_{0}^{k} \varphi_{k}(t) d t=M \int_{0}^{1} \varphi_{k}(t) d t=\alpha_{k} \rightarrow 0, \text { as } k \rightarrow \infty .
\end{aligned}
$$

Thus (5) is proved.
In the general case, let us put

$$
E_{n}=\underset{t}{E}(|g(t)|>n) \quad(n=1,2, \ldots \ldots)
$$

then $m E_{n} \rightarrow 0$ as $n \rightarrow \infty$.

$$
\begin{aligned}
& \int^{1}\left|\int_{E_{n}} \varphi_{k}(k t) g(t-x) d t\right| d x \leqq \int_{0}^{1} d x \int_{E_{n}} \varphi_{k}(k(t+x))|g(t)| d t \\
& \quad \leqq \int_{E_{n}}|g(t)| d t \int_{0}^{1} \varphi_{k}(k(t+x)) d x=\alpha_{k} \int_{E_{n}}|g(t)| d t \rightarrow 0, \quad \text { as } \quad n \rightarrow \infty .
\end{aligned}
$$

Hence there is a subsequence $\left\{E_{n_{\nu}}\right\}$ of $\left\{E_{n}\right\}$ such that

$$
\lim _{\nu \rightarrow \infty} \int_{E_{n_{\nu}}} \varphi_{k}(k t) g(t-x) d t=0
$$

almost everywhere for all k.
For any positive ε there is an m such that

$$
\left|\int_{E_{n_{m}}} \varphi_{k}(k t) g(t-x) d t\right|<\varepsilon
$$

almost everywhere. We have

$$
\int_{0}^{1} \varphi_{k}(k t) g(t-x) d t=\int_{E_{m}} \varphi_{k}(k t) g(t-x) d t+\int_{C E_{m}} \varphi_{k}(k t) g(t-x) d t,
$$

where $C E$ denotes the complementary set of E. The second term of the right hand side tends to zero as $k \rightarrow \infty$, as was proved. Thus

$$
\varlimsup_{k \rightarrow \infty}\left|\int_{0}^{1} \varphi_{k}(k t) g(t-x) d t\right| \leqq \varepsilon
$$

almost everywhere. Since ε is arbitrary, the theorem is proved.

[^0]: 1) Jessen, Annals of Math., 34 (1934).
 2) Ursell, Journ. of the London Math. Soc., 12 (1937).
