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The problem of determinating the various classes of the funda-
mental functional operations by means of the operational equations
was already discussed by S. Pincherle,D but the validity of his results
is at least directly limited for the operations whose domains are
consisted of analytic functions. We shall extend the results of S.
Pincherle to those which are concerned with the linear opezations
whose domains belong to the function-space (-oo ,oo), abbreviated, which is consisted of all the real or complex-valued functions which
are defined over (-oo, oo) and squarely Lebesgue-integrable in any
finite range.

The method is that which we used in our previous paper.2) In
stead of normalizing the space , we shall introduce the family of the
section-functions to each element of , by means of which the notion
of the boundedness of the linear operations will be defined. In this
sense any multiplication is bounded. This fact makes the application
of the functional derivations and the calculus of the generatrix func-
tions easy. In this note we shall communicate our general formulation
and the principal results, whose accurate discussion and proofs will be
given in another occasion.

1. In what follows we shall denote by E a bounded measurable
set of real numbers, with a positive measure, and by the system
consisted of all such E. A section-function of f() belonging to 2,
denoted by fs(z), is meant the one which is defined merely on E and
which coincides with f(z) at each point of E, except perhaps for an
z-set of zero measure on E. For each assigned E, the function space
[fv;fe2]3 constitutes a normalised Banach space with the norm

ilfvllE---" If(z) 12dx1/2," that is to say, L2(E) space. We shall write
E

(f, g)= _-If(x) g(x) dx and fE II flI. Any two functions fl and are

said to be equivalent to each other: denoted by f fi. if f(x)=f2(z)
in (-oo, oo), except perhaps an z-set of measure zero. We mean by
a mapping a of a correspondence of each element E of $ to another

1) See S. Pinche,rle,: Mmoire sur le calcul fonctionnel distributif. Math. Ann.
49 (1897), SS. 325-382.. See specially Chapter II, III. Exemples de dtermination
d’une classe d’operations fonctionnelles au moyen d’une quation symbolique, SS. 356-359.

2) See T. Kitagawa: A formulation of the operational calculus on the family of
mutually permutable operations. Japanese Jourm Matb_, l& (1938), pp. 125-168. See
specially Introduction.

3) The set of all elements X with a certain property of e (X) wiI! be denoted
by IX; e (X)].
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uniquely determined element E with the following two properties:
(1) E E,. implies aE1 aE; (2) For any given E from we can
find E such that aE E.

We shall introduce the fundamental
Definition I. A linearD operation A which transforms each

element of into an element of is said to be bounded, if the follow-
ing conditions are fulfilled"

(1) There is a mapping aA associated with A.
(2) To each given E in , there corresponda a positive constant

C such that the relation holds"

for all f in , where C may depend upon. A and E, but is indepen-
dent of f.

(3 ) To each given E in and each given g(x) in -, there
corresponds a function h(x) in L(aAE) such that, for any f in , the
relation holds:

(Af, g)E= (f, h),E

where h(z)=--hA(Z,E, g) may depend upon A, E and g, but is indepen-
den of f.

The connections of our definition with the ordinary boundedness
in the L2-space are worth while to be noted.2) In the LZ-space them
is "one" norm, and any mapping is not needed. Further in that space
(3) is an immediate consequence of (2) by virtue of the well-known
Riesz’s theorem, while in our space 2 this is not so. Since our notion
of boundedness of operations is, it seems, rare in the literatures, we
shall give here the concrete examples which illustrate our Definition.

Ezample 1. The linear operation M,) defined by M)f(x) = ()
f(z) with (z) in 2-,) for each f in 2, is bounded. To see this,

it suffices to define- (i) aME=E; (ii) CvM* =ess. b. Io(z) l; (iii)

hM(Z, E, g) o(z) g(z) in E.
Ezample . The translation with parameter a, that is, the linear

operation T defined by Tf(x)=f(z+a)for each f in 2, is bounded.
To see this, it suffices to define: putting rE=[z+/; z eel, that is-to
say, the set of all z+/ as z ranges through E, aTE is defined

Cv 1 (iii) hr,(Z, E, g) g(x- a) in rE and itarE= _<_a<_,,-aE: (ii)

vanishes at each point of aE-rE.
A linear operation which is not bounded in our sense is said to be

unbounded. Each of the following two operations is unbounded:

(a) Af(x)=f’(x) () Af(x)= f(x+t)dt.

1) A is said to be linear, if, whenever, f(x), .f(x) belong to the domain of A,
(A), then for any Fair of two real or complex numbers a and , af(x)+Bf(x) be-

longs to (A), ,and A(af+Bf)=aAf +{Af2.

2) In my previous paper loc. cir., I did not assume the property (3). But it has
been found that the employment of the property (3 makes our argumentsmuch easy.

3) 2"*:[f; fe 2 and are ementially bounded in any finite range].
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2. For any two linear operations A, B the commutator-product
of A and B, denoted by [A, B], is defined by [A, B]f=ABf-BAf in case
when the right members have their meaning at all. After S. Pincherle
the first functional derivation of a linear operation A, defined by
A)=[A, M], where M is an abbreviated notation of the multiplica-
tion M The functional derivations of the higher order are defined by
inductory way; if we have defined A-) with __> 2, then A) will be
defined by A’)=[A’-), M].

Under an operational equation we shall mean an equation of the
form"

(, Bf(a), B,.f(), ..., B,,f(x), Af, A’X)f, ..., A")f)=0,
where the functional relation a and the operations-B are known and
the equality holds in oo < < oo, except perhaps an -set of measure
zero, for any function f for which the left-hand side member has the
meaning at all In the following lines we may and we shall omit f
in the above equation and write simply-

o(X, B1, B2, ..., Bn, A(1), 22), ---, A(n)) 0.

3. After this preparation we are now in a position to com-
municate the following theorems.

Theorem If) A bounded linear operation A satisfies the operational
equation A)-O, if and only if there is a function (x) in * such
that A--M().

Theorem II. A bounded linear operation A satisfies the opera-
tional equation A()--aA with an assigned real number a, if and only
if A----M)T with (x) in *, that is, Af(x) (x) f(x/a) for each
f(x) in .

A linear operation A is said to be translatable in (A) contained
in , if, for each real number a, fe (A)implies that Tfe (A) and
TAf ATf. In case when e belongs to (A)for each belonging
to a set A, g(, x), which is defined by Ae --gA(2, X)e, denotes a
function belonging to for each 2 in A. As a direct consequence of
this definition we see that to a translatable operation A there cor-
responds a function g() such that g(, x)=g() in
except perhaps an x-set of measure zero (depending on 2 in general),
for each 2 for which ee (A).

Theorem III. For a bounded linear operation A, the following
two conditions are equivalent to each other ; that is, each one of them
implies the other"

1) See Pincherle loc. cir., Chapter II, II. Derivation fonctionnelte. D6velopement
fonctionnel de Taylor, SS. 352-359.

2) Cf. ]P. J. Murray and J.v. Neumann" On rings of operator Annals Math.,
37 (1936), pp. 116-229. Theorem I is to be compared with Lemma 12. 2. 2 in pp. 196-
197. It is to be noted that, in our formulation, Mx is a bounded operation and each
x belong to , while in the Hilbert space L(--oo, oo) M is unbounded and none of
x, belongs to the space when n => 0.

Further it is to be noted that our Theorem I is a special case of Theorem II.
It is rather for the sake of emphasizing the contrast between-multiplications and

linear translatable operations.
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( ) A is translatable.
(ii) For each complex number , gA(, x)=gA() in --o x ,

except perhaps an x-set of measure zero, and gA() is an integral func-
tion of 2.D

We can proceed to observe
Theorem IV. A linear operation A which is defined for every

f(x) in - is bounded and translatable, if and only if it satisfies the
following three conditions:

(1) For each in the complex -plane, g(, x)=g(i) in
-oo x oo, except perhaps an x-set of meazure zero (depending on
in general), and gA() is an integral function of .

(2) There is a positive number Na, independent of , such that

(3} To each given E, there corresponds an interval (a, b) which
contains E and such that for any f in 2, we have

lim Rf(b) =0,
*" u-- (b-a)ea

where we put

RLf(x)=e e-Af()d-ga()ea e-f()d)

=2k/(b--a) (k=O, :l:l, :t:2, ...)

Further if E E, the corresponding intervals (a, bz) and (a, b2) are
subject to (a, bx) (a, b2).

Corollary. With a bounded linear translatable operation A we can
associate a mapping aa such that, for eachf in 2, Af(x) I! NA IlflI,A,
where Na=L tL b. gA(i)l.

4. For a bounded linear operation A, A.,. (n=l, 2, 3, ...)
are defined by induction as follows- (i) for each real number a,
[T,A]=--A; (ii) when A.z _p has been already defined or
any set o n-1 real numbers (a, a, ..., a_), then A. is de-
fined by A.2 )=--[T, A,.. _] or any real number a, We
observe

Theorem V. A bounded linear operation A stsfies the equation
aa2 a T,/2+.../, for any set of n real numbersA(al. a2 an t

(a, a2, ..., a,), if and only if there is a system of the n bounded linear
translatable operations A (k=O, 1, 2, ..., n-l) such that A=M+
A_M-/A_2M-2+ AoM.

1) It is by no means true that to any assigned integral function g(a) there cor-
responds a bounded linear translatable operation A such that Aeg(x)ea. Cf., the
following Theorem IV.

2) The rble of the operation R may be seen from the discussions developed in
my previous paper loc. cit, pp. 158-160, where the notation H is adopted in stead
of R.
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A bounded linear operation A characterised by Theorem V may
be called to be of the Laplace type, in connection with the terminology
adopted in the theories of Laplace differential equation of infinite order.D
It forms a contrast with differential operation, as a bounded linear
translatable operation with a multiplicatio The differentiation, how-
ever, cannot be bounded" indeed we can prov that a linear operation
A which satisfies the operational equation A<)= 1 cannot be bounded.
Therefore it is necessary to introduce

Definition II. is the linear set of all the f() in 2 for
which there is a function f*(x) in such that, for each E,
lira (T,f(x)-f(x))/a-f*(x) IIE=O. The linear operation D is defined-0

by" Df(x) --f*(x), for f(x) in . () is the linear space of those
functions f(x) in for which the (n+l)-equivalence relations" (i)
f(o)(x) f(x) (ii) f()(x) Df(o)(X) (iii) f(2,(x) -- Df(D(x) (n+ 1)
f()(x) Df(_)(x), define f()(x) which are absolutely continuous for
0 r n and belongs to for n. We define the linear operation
D by" Df(x) --f()(x) for f(x) in !D().

Definition III. A linear operation A is said to be bounded in the
depth n concerning the mapping aA if the follougng conditions are
fulfilled"

(1) )(A)=!D() and there corresponds a mapping a to A.
(2) To each given E, there corresponds aAE such that, for any

f in ),

where the non-negative numbers C.E(k--O, 1, 2, ..., n) may depend upon
E and A, but are independent of E.

(3) To each given g(x) in E and each given g(x) in (), we can
find a function h(x) such that

(Af, g)=(f, h)AE
where h(x):--hA(x, E, g) may depend upon A, E and g, but is inde-
pendent of f in !D().

Then we observe
Theorem VI. A linear operation A which is bounded in the

depth n satisfies the equation A()=n! if and only if it is a linear
differential operation2)of the exactly n-th order ; that is, for each f(x)
in !D’), Af(x) g()(x), where g(,)(x) is defined by the following system
of equivalences; (i) g(o)(X)

_
o(X)f(x) (ii) g)(x) g(_)(x)+(x) Df(x)

(k= 1, 2, ..., n), where o(X), (x), ..., (x) (=--1) are all belonging to 2..
In a similar manner we can give a general form of the linear

operations which are bounded in the depth n and which satisfy the

1) See tt. T. Davis: The theory of linear operations from the standpoint of
differential equation of infinite order. The Principia Press (1936). Specially see p. 338.

2) See M. Bcher: Lemons sur les Mthodes de Sturm. Gauthier-Villars et cie,
Paris (1917). Also cf. Israel Halperin: Closures and adjoints of linear differential
operatora Annals Math_ 38 (1937).
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equation A()+#_(x) A(-)+--- +#0(x)A 0, where #a(k) are given
functions belonging to .*.

5. The chief aim of our investigations lies in establishing a
formulation which is suitable for the researches of the associated func-
tional equation We shall apply the results of this paper on our
research on the linear functional equations of the Laplace type, which
the author is now preparing to issue.)

1) In a characterisation of Schriidinger’s operator in quantum mechanics, J.v.
Neumann appealed to the relation due to H. Weyl concerning the two classes of unitary
operators U(a)--exp (2iaP/h) and V()--exp (2riQ/h), in stead of the employment
of the classical relation PQ-QP--hl/2ri. Our present formulation may be recognised
to be an intermediate one between the two formulations

See J.v. Neumann: Die Eindeutigkeit der schriidingeren Operatoren. Math.,
Ann. 104 (1929), SS. 570-578.


