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84. Application of Mean Ergodic Theorem
to the Problems of Markoff’s Process.

By KSsaku YosmA and Shizuo KAKUTANI.
Mathematical Institute, Osaka Imperial University.

(Comm. by T. TAKA(I, M.I.A., Nov. 12, 1938.)

1. Two supplements to the Mean Ergodiz Theorem.
Mean Ergodic Theorem. Let 3 be a (real or complex) Banach

space, and denote by T a linear operator which maps in itsdf. If
(1) there exists a constan C such that TII C for n= 1, 2, ...,

and

for any e3 the sequence x=1 (T+T2+...+T)x (n=l,
(2) n

2, ...) is weakly compact in
then

there ezists a linear operator T, which naps 3 in itsdf, such

(3) tha$ lim 1 (T/ T2/ .--+ T)z= Tz strongly for any e 3, and

TTI= TIT= TI= TI.
T is a projection operator which maps on the proper space

of T belonging to the proper value 1. Because of (1), (2) is surely
satisfied if T is weakly completely continuous, viz., if T maps the unit
sphere z <: 1 of on a point set weakly compact in . These re-
sults were obtained in our previous notes. We now prove the

Theorem 1. (2) and hence (3) hold good if T satisfies (1) and if
there exist an integer k and a weakly completely continuous

(2’) linear operator V, which naps 3 in itself, such that
T- VII <: 1.

Proof:2 It is sufficient to prove the ease k= 1. Put T-VII--
1

a < 1 and z. (T+ T2+ .--+ T)x (n, p= 1, 2, ...). We have T
n

V+D, where V T-(T- V) is weakly completely continuous with
Vt---- V and D _<_ . Hence z . +Tx._ z. + V._+
D.
_

Since .- =<=< C-II for n 1, 2, ..., there exists (for each
p) a subsequenee {n’} of {n} such that {Vx,.,_} converges weakly
-to a point y e D. Consequently we have (since lim [f(z,.)

(4) lim ]f(z,)-f(y)] lim ]f(x,.

+lim f(O,.,-) <= a. lifli C-II

for any linear functional f on .
1) K. Yosida: Mean Ergodic Theorem in Banach spaces, Proc. 14 (1938), 292.

S. Kakutani Iteration of linear operations in complex Banach spaces, ibd., 295.
2) Cf. the arguments given by one of ua See the paper of Kakutani cited

in (1).
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Applying the diagonal method, we may assume that (4) holds for
any linear functional f on and for p-1,2, (y may depend
on p). Consider the sequence y (p--l, 2, ...). From (4) we have
f(y) f(yq) (a aq) "Ilfli" C I!, and, since f is an arbitrary unc-
tional on , y-yqli (a-t-aq) C" 1I or any p and q, which shows
that (y)is a fundamental sequence in D. Put y-liray Then it

is easy to see that we have lira f(,)-f(y) for any linear unctional

f on . Hence the sequence ) converges weakly to a point
yD.

Next we shall prove a theorem which constitutes a generalisation
o a theorem due to S. Mazur.D

Theorem . Let T satisfy (1)-and (2). Consider the proper value
equation

(5) Tx=,

and its conjugate equation2)

(6) TX=X.

Then, if p and q denote the numbers of the linearly independent solu-
tions of (5) and (6) respectivdy, we must have p=q.

Proof" Put =TD. Then p=dimension of ida. Any linear
functional X(x) on !D defines a linear functional X’(x) on !- X(x)=
X(Tx). By (3) we have, for any x e D, X’(Tx)-X’(x)=X(TTx)-
X(Tx) X(Tx- Tx) 0. Hence the linear functional X’ satisfies (6),
from which follows q p.

Conversely, let X be a linear functional on D which satisfies (6).

we have, for any e!D, X()=X(T)=X(1- -)Then (T/ T/.--/ T)x

and hence X(x)=X(Tx) by (3). Thus X is, essentially, a linear func-
tional on =T, and hence q p.

2. Applications to the problem of Markoff’s process.
Consider a Markoff’s process by which each point x of the closed

interval 9=[0, 1] is transferred to a point y e 9 after the elapse of a
unit time. Denote by P(x, E) its transition probability; tbt is, P(x, E)
is a probability that a point x comes into a Borel set E of /2 after
the elapse of a unit time. We have 0 P(x, E) 1 and P(x, .Q)= 1.
Assume that P(x, E) is measurable in x if E is fixed, and that, for
any fixed x, P(x, E) is a totally additive set function defined for all
the Borel sets of /2.

2-1. Condition of J. L. Doob.3)

1) S. Mazur" ber die Nullstellen linearer Operatoren, Studia Math. 2 (1930),
11-20. The assumption in Theorem 2 is much weaker than that-of Mazur’s. He as-
sumed that is locally weakly compact.

2) As to the notion of conjugate operators see the paper of S. Mazur cited in (1).
3} J.L. Doob: Stochastic processes with an integral valued parameter, Trans.

Amer. Matl Soc. 4 (1938), 87-150.
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There is a neasurable function p(, y) defined for 0 x, y 1

such ha P(, E)= I p(’ y) dy for any e 2 and for any Bard

(7) se E of 9; and noreover, p(x, y) satisfies he uniforn inte-
grabiliy condition" for any decreazing sequence {E} of nea-

sets wih n{E)- 0, we have I- p(’ y) dy --surable 0

forrdy in x.
It will be easily seen that this condition is equivalent to the following one-

for any positive number 0 $here eists a positive number(8)
() :> 0 such tha n(E)<: () implies P(, E) for any

Theorem 3. Under the condition of Doob, the integral operator

I:f()P(,f-- Tf g" g(y) y) dx

is a linear operator which naps the space (L) in itsdf. This T is of
norm 1 and is weakly completely continuous.

Proof" We have, by fubini-Tonelli’s theorem, llglIL=: g(Y)

< ]f()p(x,y) ]ddy- If(x)] p(,y)dy dx-- If(x) ]dx--]I
Hence Till 1- By taking f()l we see that Tilt.= 1.

As the conjugate space of (L) is the space (M}, any linear func-
tional k defined on the image T(L) of (L) is given by

I: g(y) k(y)dy=I:(I:f(),(, y)d)k(y)dy
l:f(x) (I: p(x, y)k(y)dy)dx, k(y) e(M).

The subset (M)’ of (M) of all the functions of the form- : p(x, y) k(y) dy,

k(y)e(M), k l]M 1, is separable in the topology of (M). This may
be proved as follows"

Let S be the unit sphere k liM 1 of (M). Since S (M) (L)
and since (L) is separable, there exists a countable subset (k(y)} of S
which is dense in S in the topology of (L); that is, for any k(y)e
with ilk IlM 1, there exists a subsequence {k,(y)} of {k(y)} such that

k-k, !1 lira " k(y)- k,(y) dy O. Consequently, them existslim

a further subsequence (k,,(y)} of {k,(y)}, a decreasing sequence
of measurable sets and a sequence {,,} of positive numbers such that
lim m(E,,)=O lim ,,=0 and ik(y)-k,,(y)l ,, for any yE,,.

1) (L) is the linear space of all the measurable functions which are absolutely

[0, 1]. For any f(z)e(L), we define its norm byintegrable in
J0

2) TIlL is a norm of T as an operator in (L). Analogous notations will be used
for other Banach spacea

3) (M) is the linear space of all the bounded measurable functions defined in
[0,1]. For any k(x)e(M), we define its norm by k li--ess, max. [k()[.
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Hence

+

_
2I-. ,(x, y)dy+,,--)0 uniformly in . This proves the

separability of (M)’ in the topology of (M).
Since the space (L) is weakly complete, we see by the diagonal

process that T is weakly completely continuous as an operator in (L}.
Theorem . Under the condition of Doob, there eists a meazurable

function p.(z, y) defined for 0 , y 1 such that for any f(z)e (L)
we have

lim f(x) (x, y)+p)(x, y) +.-- +p)(x,y) dz- y)dx dy 0
n- 0 0

and

(9)

(10) 1.

Theorem 5.D Under the condition of Doob, the proper value 2 of
modulus 1 of T is finite in number and satis the binomial equation :
2= 1, where N is a fixed positive integer.

Proof" The conjugate equation off(y)=), f(x)p(x, y)dx, f(z)e(L),
0

is given by

(11) ()=,1 (, )()d, () e (M).

I-Ienee, by Theorem , it is suffieient to show tlt if (11) admits
solution g(x), gllM=l, we must have =1, where n is an integer not
greater than some constant determined only by the function
This may be done as follows:

For any with 0 <7 <: 1 we have

+
(u) < 1-8 () > 1-$

--’Ilo JO(, y) (1-)dy+,Ip(x, y) dy 1-+Ip(x, y) dy
ply) > 1- () >

Since g [[M 1, there exists an xo with g(xo) :> 1--; and for this

we have 1 Ip(x,o, y)dy 1__ Therefore, by (8), there exists a con-

stant r :> 0 determined from the function p(x, y) only, such that

1) This is a generalisation of a theorem of M. Frchet. Frchet assumed that
p(n)(x, y) is uniformly bounded. See the paper of Frdchet: Sur l’allure asymptotique
des densits itts dans le problme des probabilit& "en chaine," Bull. de la Soc.
matb. de France, 6Z (1934), 68-83.
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m(E[lg(y) > 1-]) > r for any > 0 and for any solution g(y) of

(1) with g IIM L
The rest of the proof may be carried out as in the paper of

Frchet’s.
Theorem 6. Under the condition of Doob, the proper value 1 of T

is of finite multiplicity.
Proof" First we notice that there is a constant r:>0 such that

y)dy--1 implies re(E) for and for measurable setany any

E9.
Let now f(y)= f(x)p(x, y)dx. Then If(Y) 0If(x) p(x, y)dx, and

hence by integrating with respect to y and applying Fubini-Tonelli’s

theorem, we see that If(y) != olf(x) lp(z,y)dx almost everywhere. Them-

fore, following the same arguments as were given by N. Kryloff and
N. Bogoliofiboff,) we see that, if the multiplicity of the proper value 1

is greater than :> __1, there exists a system of n :> real non-nega-

tive measurable functions satisfying

.I’o 0 v
P(Y) Ii p,(x) p(x, y)dx almost everywhere.and

Let E be the set of y at which p(y) O, then E are mutually disjoint.

We have 1=.[()d=I(I,()p(, )d)d I,()(I(,)g) by

(,)d=1 lmost everywhere in E,Fubini-onelli’s theorem. Hence
E

and thus m(E) r for i=l, 2, ..., n, which is a contradiction since

n >--.1 Consequently the multiplicity of the proper value 1 is not

greater than _1.
2-2. Condition of W. Doeblin.)

There exist two positive numbers b, 0 such t,ha re(E) y ira-(12)
plies P(x,E) 1 b for any x andfor any measurable setE 12.

Clearly the condition of Doeblin is much more general than that of
Doob.

Theorem 7. Under the condition of Doeblin, the integral operator

Jo

1) N. Kryloff and N. Bogoliofiboff" Sur les proprit(s ergodiques de l’equation
de Smoluchovski, Bull. de la Soc. math. de France, 64 (1936), 49-56.

2) W. Doeblin: Sur les proprit(s asymptotiques de mouvements rgis par cer-
tains types de chaines simples, Bull. math. de la Soc. Roumaine des Sciences, 39 (1937),
(2), 3-61.



338 K. YOSIDA and S. KAKUTANI. [Vo]. 14,

is a linear operator which maps the space ())in itself. This T is of
norm 1 and there exists a weakly completely continuous linear operator
V, which maps () in itself, such that T-VII <: 1.

The same theorem may be stated for the space (BV)."- For this
purpose, denote by I(yo) the closed interval 0 y yo and consider the

function F(x, y)=--P(x,I(y)). F(x, y) is a measurable function defined

for 0 x, y 1, and is monotone in y if x is fixed.
Theorem 7’. Under the condition of Doeblin, the integral operator

is a linear operator which maps he space (BV) in itself. This T is
of norm 1 and there exists a weakly completely continuous linear oper-
ator V, which maps (BV) in itself, such that T-VI]B, 1.

Proof" Since F(x, y) is monotone in y if x is fixed, p(x, y)-OF
3y

exists almost everywhere (for each x). p(x, y) is measurable in 0 =< x, y 1.

Put q(x, y)=p(x, y) if p(x, y) 1 and q(x, y)= 0 if p(x, y) > 1__. Then

G(x, y)= _l:q(x’ t)dt and H(x, y)=F(x, y)-G(x, y) are also measurable in

0 =< x, y 1, and monotone in y if x is fixed. Now, consider the linear
operators V and W which correspond to G(x, y) and H(x, y) respectively.
Clearly T= V+ W. We shall show that V is weakly completely con-
tinuous as an operator in (BV) and that I[WIIB 1-b 1.

In order to prove that V is weakly completely continuous, let
{o(x)} be a sequence of functions of bounded variation with IIB 1,
n=l, 2, We have to choose a subsequence {o.(x)} of {o.(x)} and a
function o0(x) e (BV) such that V,, converges weakly to 0(x) that is,
f(o.,) converges to f(o0) for any linear functional f on (BV). It is disap-
pointing that the general form of linear functionals on (BV)is not yet
known, but we can evade this difficulty. Since Vo is absolutely continuous
for any o(x)e .(BV), and since the subspace (A) of (BV) of all the abso-
lutely continuous functions of (BV) is isometric to (L), f may be consider-
ed as a functional on (L); and consequently, by a well-known result, f is
represented by a function k(x)e (M). Moreover, since Vo is absolutely

continuous with uniformly bounded density for any o()e (BV)

with o iIBV 1, the range of V corresponding to a sphere o IIsv <: 1 of
(BV) is even isometric to a uniformly bounded (in the topology of (M))
part of (M), which is a linear subspace of (L).

Thus our problem is transformed into the following one" Given

1) () is the linear space of all the totally additive set functions defined for all
the Borel sets of @=[0,1]. For any o(E) e (), we define its norm by p ll--total
variation of (E)--1. u. b. (E)--g.l.b. (E).

2) (BV) is the linear space of all the functions of bounded variation defined in
0 __< =< 1. For any ()e(BV), we define its norm by illhlr-I (0)]+total variation
of () in 0 _<_ =< 1.
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a sequence {g(x)} of uniformly bounded measurable functions,
(z) e (M), we have to choose a subsequence {,(z)} of {g(x) and a

function g0(x)e (L),) such that we have lim I-’g,,(x)k(x)dx I-"go(x)k(x)dx
j0 j0

for any function k(x)e (M).
This problem may be solved as follows: Since (M) (L) and

since (L) is separable, there is a countable subset {k(x)} of (M)
which is dense in (M) in the topology of (L). Applying the diagonal
method, we can choose a subsequence {g,,(x)} of {g,(x)} such that

lira ,()k()g exists for m= 1, 2, Sinee {g,,()} is uniformly
.=,,o 0

unded, lira "()() ex:iss o:r ny () (). Te existence
J0

of a limiting function g0(z) (L) is now a direct consequence of the
facts that (M) (L) and that (L) is weakly complete.

In order to prove that lllSrllsr 1-b< 1, it is sufficient to show
that H(z, 1) 1-b for any z. This may be easily seen from the con-
dition of Doeblin, if we observe that, for any z, the set of y, where
H(z,y) actually increases, is of measure < by the construction of
HCx, y) (and q(x, y)).

Remark. Theorems 4 and 6 are also true for the case when the
condition of Doeblin is satisfied. This may be easily seen as in the
preceding.

1) In general, it is impossible to take g0() in (M).


