PAPERS COMMUNICATED

7. On the Generalized Circles in the Conformally Connected Manifold.

By Yosio Mutô.
Tokyo Imperial University.
(Comm. by S. Kakeya, m.I.A., Feb. 13, 1939.)

As in Mr. K. Yano's paper ${ }^{1}$) in which the same problem is studied, take in the tangential space an ($n+2$)- spherical "repère naturel" $\left[A_{P}\right]$ satisfying the following equations ${ }^{2}$:

$$
\begin{gather*}
A_{0}^{2}=A_{\infty}^{2}=A_{0} A_{i}=A_{\infty} A_{j}=0, \quad A_{0} A_{\infty}=-1, \quad A_{i} A_{j}=G_{i j}=\frac{g_{i j}}{g^{\frac{1}{n}}}, \tag{1}\\
(i, j, k, \ldots=1,2, \ldots, n)
\end{gather*}
$$

the connection being defined by

$$
\begin{equation*}
d A_{P}=\omega_{P}^{q} A_{Q}, \quad(P, Q, R, \ldots=0,1, \ldots, n, \infty) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega_{P}^{Q}=\Pi_{P k}^{Q} d x^{k}, \tag{3}
\end{equation*}
$$

$$
\left.\begin{array}{c}
\Pi_{0 k}^{\infty}=\Pi_{\infty k}^{0}=\Pi_{0 k}^{0}=\Pi_{\infty}^{\infty}=0, \quad \Pi_{00 j}^{i}=\delta_{j}^{i}, \quad \Pi_{j k}^{\infty}=G_{j k}, \quad G_{i j} \Pi_{\infty k}^{j}=\Pi_{j k}^{0} \tag{4}\\
\Pi_{j k}^{i}=\frac{1}{2} G^{i k}\left(\partial_{j} G_{k h}+\partial_{k} G_{j h}-\partial_{h} G_{j k}\right)
\end{array}\right\}
$$

Then any curve $x^{i}(s)$ in the manifold can be developed into a curve in the tangential space at any point $x^{i}\left(s_{0}\right)$ on the curve by the formulae (2). Let us consider the curves whose developments are circles.

When we take two quantities a^{P} and b^{P} which are contragradient to A_{P} and satisfy the equations

$$
\left.\begin{array}{rl}
G_{P Q} a^{P} a^{Q}=1, \quad G_{P Q} a^{P} b^{Q} & =0, \quad G_{P Q} b^{P} b^{Q}=0, \tag{5}\\
a^{\infty} & =0,
\end{array}\right\}
$$

where

$$
G_{P Q}=A_{P} A_{Q},
$$

then

$$
\begin{equation*}
\frac{1}{b^{\infty}} A_{0}+a^{a} A_{a} t+\frac{1}{2} b^{P} A_{P} t^{2} \quad(\alpha=0,1,2, \ldots, n) \tag{6}
\end{equation*}
$$

is an invariant and represents a circle in the tangential space. Because of (5), (6) becomes, when multiplied by b^{∞},

$$
\begin{align*}
A & =A_{0}+b^{\infty} a^{a} A_{a}+\frac{1}{2} b^{\infty} b^{P} A_{P} t^{2} \\
& =\left(1+G_{i j} a^{i} b^{i} t+\frac{1}{4} G_{i j} b^{i} b^{i} t^{2}\right) A_{0}+\left(b^{\infty} a^{i} t+\frac{1}{2} b^{\infty} b^{i} t^{2}\right) A_{i}+\frac{1}{2}\left(b^{\infty} t\right)^{2} A_{\infty} \tag{7}
\end{align*}
$$

[^0]When the development of the curve is a circle, the equation

$$
\begin{equation*}
\frac{d A}{d s}=\alpha A \tag{8}
\end{equation*}
$$

must be satisfied along this curve for suitably chosen a^{P}, b^{P} and a. This equation must hold for any value of t but α and $\frac{d t}{d s}$ may contain t.

From (7) and (8) we obtain

$$
\begin{align*}
& \frac{d}{d s}\left(G_{i j} a^{i} b^{j} t+\frac{1}{4} G_{i j} b^{i} b^{j} t^{2}\right)+\left(b^{\infty} a^{i} t+\frac{1}{2} b^{\infty} b^{i} t^{2}\right) \Pi_{i k}^{0} x_{k}^{\prime} \\
& \quad=\alpha\left(1+G_{i j} a^{i} b^{j} t+\frac{1}{4} G_{i j} b^{i} b^{j} t^{2}\right) \tag{9,a}\\
& \frac{d}{d s}\left(b^{\infty} a^{i} t+\frac{1}{2} b^{\infty} b^{i} t^{2}\right)+\left(1+G_{j k} a^{j} b^{k} t+\frac{1}{4} G_{j k} b^{i} b^{k} t^{2}\right) x^{\prime i} \\
& \quad+\left(b^{\infty} a^{i} t+\frac{1}{2} b^{\infty} b^{j} t^{2}\right) \Pi_{j k}^{i} x^{i k}+\frac{1}{2}\left(b^{\infty} t\right)^{2} \Pi_{\infty \infty}^{i} x^{\prime k}=\alpha\left(b^{\infty} a^{i} t+\frac{1}{2} b^{\infty} b^{i} t^{2}\right) \tag{9,b}\\
& \frac{1}{2} \frac{d}{d s}\left(b^{\infty} t\right)^{2}+G_{i j}\left(b^{\infty} a^{i} t+\frac{1}{2} b^{\infty} b^{i} t^{2}\right) x^{\prime j}=\alpha \frac{1}{2}\left(b^{\infty} t\right)^{2} \tag{9,c}\\
& \text { where } \\
& \qquad x^{\prime i}=\frac{d x^{i}}{d s}
\end{align*}
$$

As t is an invariant in (6) it is expected that an invariant parameter s is obtained by putting $\frac{d t}{d s}=1$ in the equations (9). Expanding α in series

$$
\alpha=\alpha_{0}+\alpha_{1} t+\alpha_{2} t^{2}+\cdots
$$

and comparing the coefficients of t^{n},s in (9) we get from (9, a)

$$
a_{0}=G_{i,} a^{i} b^{j}
$$

and from (9, c), $\quad a_{i}=0 \quad$ for $\quad i \neq 0$,
and because of these, (9) becomes

$$
\begin{gather*}
\frac{d}{d s}\left(G_{i j} a^{i} b^{j}\right)+\frac{1}{2} G_{i j} b^{i} b^{j}+b^{\infty} a^{i} \Pi_{i k}^{0} x^{k}-\left(G_{i j} a^{i} b^{j}\right)^{2}=0, \tag{10,a}\\
\frac{d}{d s}\left(G_{i j} b^{i} b^{j}\right)+2 \Pi_{j k}^{0} b^{\infty} b^{j} x^{\prime k}-G_{i j} a^{i} b^{j} G_{l m} b^{l} b^{m}=0, \tag{10,b}\\
b^{\infty} a^{i}+x^{i}=0, \tag{11,a}\\
\frac{d}{d s}\left(b^{\infty} a^{i}\right)+\Pi_{j k}^{i} b^{\infty} a^{j} x^{\prime k}+b^{\infty} b^{i}+G_{j k} a^{j} b^{k}\left(x^{\prime i}-b^{\infty} a^{i}\right)=0, \tag{11,b}\\
\frac{d}{d s}\left(b^{\infty} b^{i}\right)+\Pi_{j k}^{i} b^{\infty} b^{j} x^{\prime k}+\frac{1}{2} G_{j k} b^{i} b^{k} x^{\prime i}+\left(b^{\infty}\right)^{2} \Pi_{\infty \kappa k}^{i} x^{\prime k}-b^{\infty} b^{i} G_{j k} a^{j} b^{k}=0, \tag{11,c}\\
\left(b^{\infty}\right)^{2}+G_{i j} b^{\infty} a^{i} x^{\prime j}=0, \tag{12.a}\\
\frac{d}{d s}\left(b^{\infty}\right)^{2}+G_{i j} b^{\infty} a^{i} x^{\prime j}-\left(b^{\infty}\right)^{2} G_{i j} a^{i} b^{j}=0, \tag{12,b}
\end{gather*}
$$

From (11, a) we get because of (5), that is, $G_{i j} a^{i} a^{j}=1$

$$
\begin{equation*}
b^{\infty}=\sqrt{G_{i j} x^{\prime i} x^{\prime j}}=l . \tag{13}
\end{equation*}
$$

When we define

$$
\begin{equation*}
v^{i}=x^{\prime \prime i}+\Pi_{j k}^{i} x^{\prime} x^{\prime k}, \tag{14}
\end{equation*}
$$

$(11, b)$ and $(11, a)$ give us

$$
v^{i}=l b^{i}+2 G_{j k} a^{j} b^{k} x^{\prime i},
$$

hence

$$
\begin{align*}
& l l^{\prime}=G_{j k} a^{j} b^{k} l^{2}, \\
& G_{j k} a^{j} b^{k}=l^{-1} l^{\prime}, \tag{15}
\end{align*}
$$

and consequently

$$
\begin{equation*}
b^{i}=l^{-1} v^{i}-2 l^{-2} l^{\prime} x^{i}, \quad G_{j k} b^{j} b^{k}=l^{-2} G_{j k} v^{j} v^{k}, \tag{16}
\end{equation*}
$$

where l^{\prime} denotes $\frac{d l}{d s}$.
Then from ($10, a$) we get

$$
\begin{equation*}
l^{-1} l^{\prime \prime}-2 l^{-2} l^{\prime 2}+\frac{1}{2} l^{-2} G_{j k} v^{j} v^{k}-\Pi_{j k}^{0} x^{j} x^{\prime k}=0 \tag{17}
\end{equation*}
$$

and from (11, c),

$$
\begin{gathered}
\frac{d}{d s}\left(v^{i}-2 l^{-1} l^{\prime} x^{\prime i}\right)+\Pi_{j k}^{i}\left(v^{j}-2 l^{-1} l^{\prime} x^{\prime j}\right) x^{\prime k}+\frac{1}{2} l^{-2} G_{j k} v^{j} v^{k} x^{\prime i} \\
+l^{2} \Pi_{\infty k}^{i} x^{\prime k}-l^{-1} l^{\prime}\left(v^{i}-2 l^{-1} l^{\prime} x^{\prime i}\right)=0,
\end{gathered}
$$

which becomes because of (17)

$$
\begin{align*}
& \frac{d}{d s} v^{i}+\Pi_{j k}^{i} v^{j} x^{\prime k}-3 l^{-1} l^{\prime} v^{i}+\frac{3}{2} l^{-2} G_{j k} v^{j} v^{k} x^{\prime i}-2 \Pi_{j k}^{0} x^{\prime j} x^{\prime k} x^{\prime i} \\
& \quad+l^{2} \Pi_{\infty}^{i} x^{\prime} x^{\prime k}=0 . \tag{18}
\end{align*}
$$

It will be easily verified that $(10, b),(12, a),(12, b)$, and (17) are all satisfied by (18), which are the equations of the curve sought.

As we put $\frac{d t}{d s}=1$, it is necessary to prove that there is no curve which can not be expressed in the form (18), the development being a circle. This is easily done, because for any given initial values of a^{P} and b^{P} satisfying (5) a curve satisfying (18) exists, and every circle in the tangential space passing through the point of contact is expressible in the form (6).

Now (18) are the equations of a generalized circle in the manifold with conformal connection (2), (3), (4) where s is an invariant parameter. When we take another parameter σ which is not invariant under the transformation of coordinates x^{i} but satisfies the simpler equation

$$
\begin{equation*}
G_{i j} \frac{d x^{i}}{d \sigma} \frac{d x^{j}}{d \sigma}=1 \tag{19}
\end{equation*}
$$

we have

$$
l=\frac{d \sigma}{d s}
$$

$$
v^{i}=\left(\frac{d^{2} x^{i}}{d \sigma^{2}}+\Pi_{a b}^{i} \frac{d x^{a}}{d \sigma} \frac{d x^{b}}{d \sigma}\right)\left(\frac{d \sigma}{d \dot{s}}\right)^{2}+\frac{d x^{i}}{d \sigma} \frac{d^{2} \sigma}{d s^{2}},
$$

$G_{i j} \nu^{i} v^{j}=G_{i j}\left(\frac{d^{2} x^{i}}{d \sigma^{2}}+\Pi_{a b}^{i} \frac{d x^{a}}{d \sigma} \frac{d x^{b}}{d \sigma}\right)\left(\frac{d^{2} x^{j}}{d \sigma^{2}}+\Pi_{c d}^{j} \frac{d x^{c}}{d \sigma} \frac{d x^{d}}{d \sigma}\right)\left(\frac{d \sigma}{d s}\right)^{4}+\left(\frac{d^{2} \sigma}{d s^{2}}\right)^{2}$,
and consequently we get from (17) and (18)

$$
\begin{align*}
\{s\}_{\sigma} & =\frac{1}{2} G_{i j}\left(\frac{d^{2} x^{i}}{d \sigma^{2}}+\Pi_{a b}^{i} \frac{d x^{a}}{d \sigma} \frac{d x^{b}}{d \sigma}\right)\left(\frac{d^{2} x^{j}}{d \sigma^{2}}+\Pi_{c d}^{j} \frac{d x^{c}}{d \sigma} \frac{d x^{d}}{d \sigma}\right) \\
& -\Pi_{i j}^{0} \frac{d x^{i}}{d \sigma} \frac{d x^{j}}{d \sigma} \tag{20}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{d}{d \sigma}\left(\frac{d^{2} x^{i}}{d \sigma^{2}}+\Pi_{j k}^{i} \frac{d x^{j}}{d \sigma} \frac{d x^{k}}{d \sigma}\right)+\Pi_{j k}^{i}\left(\frac{d^{2} x^{j}}{d \sigma^{2}}+\Pi_{l m}^{j} \frac{d x^{l}}{d \sigma^{2}} \frac{d x^{m}}{d \sigma}\right) \frac{d x^{k}}{d \sigma} \\
& \quad+\frac{d x^{i}}{d \sigma}\left[G_{j k}\left(\frac{d^{2} x^{j}}{d \sigma^{2}}+\Pi_{a b}^{j} \frac{d x^{a}}{d \sigma} \frac{d x^{b}}{d \sigma}\right)\left(\frac{d^{2} x^{k}}{d \sigma^{2}}+\Pi_{c d}^{k} \frac{d x^{c}}{d \sigma} \frac{d x^{d}}{d \sigma}\right)-\Pi_{j k}^{0} \frac{d x^{j}}{d \sigma} \frac{d x^{k}}{d \sigma}\right] \\
& \quad+\Pi_{\infty k}^{i} \frac{d x^{k}}{d \sigma}=0 \tag{21}
\end{align*}
$$

These are just the same expressions as obtained by Mr. K. Yano when we put $M=1$ and constant $=0$. That these two equations are necessary will be published by him too.

[^0]: 1) K. Yano: Sur les circonférences généralisées dans les espaces à connexion conforme, Proc. 14 (1938), 329-32.
 2) K. Yano: Remarques relatives à la théorie des espaces à connexion conforme, Comptes Rendus, 206 (1938), 560-2.
