
No. 6.] 169
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Mathematical Institute, Osaka Imperial University.

(Comm. by T. TAKAGI, M.I.A., June 12, 1939.)

1. Introduction. Let E be a Banach space (element z with
norm Ilxll), and let E be its conjugate space (i. e. the space of all
bounded linear functionals f(z) defined on E, with norm llfll=l, u. b.

Il_<.l

f() i). E is also a Banach space and its conjugate space E may be
considered. E is called to be regular if we have E=E, or equivalently,
if every bounded linear functional Xo(f) defined on E may be re-
presented in the form" Xo(f)=f(zo) for any fe E, where z0 is a point
from E.

We shall give, in the first part of this paper ( 2 and 3), some
conditions for the regularity of E. This problem was investigated by
several authors and many interesting results were obtained. Our
principal idea is to use the weak topologies in E and in E. It seems
to me that too little attention has been paid to the weak topologies in
Banach spaces, while on the contrary in the theory of Hilbert space
weak topology plays an essential rSle. It will be shown in this paper
how weak topologies are successfully introduced into such problems. We
shall state only the definition of weak topologies and a few funda-
mental theorems, the rest being left to another occasion.

In the second part of this paper ( 5), we shall prove that every
uniformly convex Banach space is regular (Theorem 3).) From this
follows easily that Mean Ergodic Theorem holds true in uniformly
convex Banach spacea A direct proof of this fact was obtained recently
by Garrett Birkhoff.2)

The proof of Theorem 3 relies on Helly:s theorem.3) Mr. Yukio-
Mimura has kindly informed me of a simple and elegant proof of this
theorem. This proof is given in 4. I express my hearty thanks to
Mr. Yukio Mimur&

2. Wea/ topo/og/es. (1) Weak topology in E. For any x0eE,
its weak neighbourhood U(x0,j],f2, ..., f, e) is defined as the totality
of all the points z e E such that f(x)-Y(Zo) <: e for i= 1, 2, ..., n,
where {](z)} (i= 1, 2, ..., n) is an arbitrary system of bounded linear
functionals defined on E and :>0 is an arbitrary positive number.

1) This theorem was recently proved by D. Milman in a different way. D. Milman
On some criteria for the regularity of spaces of type (B), C.R. URSS, 20 (1938),
243-246. D. Milman’s proof uses the notion of transfinite closedness. It is our purpose
to avoid, as far as possible, the use of transfinite method in the theory of Banach
spaces.

2) G. Birkhoff: The mean ergodic theorem, Duke Math. JourrL, 5 (1939), 19-20.
3) E. Helly- )ber Systeme linearer Gleichungen mit unendlich vielen Unbe-

kannten, Monatsh. fir Math. und Phys., 31 (1921), 60-91.
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The topology (WT) of E defined by this neighbourhood system is called
the weak topology of E as dements.

(2) Weak topologies in E. For any fi e E its weak neighbourhood
Udfo, x, x2, ..., , e) is defined as the totality of all the bounded linear
functionals f(x) defined on E such that f(c)-f0(x)l<: for i=l,
2, ..., n, where (x} (i= 1, 2, ..., n) is an arbitrary system of points from
E and :> 0 is an arbitrary positive number. The topology (WT) of
E defined by this neighbourhood system is called the weak topology of
E as flnctionals.

It is clear that we can also introduce in E a weak topology as
elements (considering E itself as a Banach space). The weak topology
(WT) of E as elements is indeed defined by the following neighbour-

hood system" for any jeE its weak neighbourhood U(f0, X, X, ...,
X., e) is the set of all the elements f of E such that X(f)-X(fo) i
for i= 1, 2, ..., n, where {X(f)} (i= 1, 2, ..., n) is an arbitrary system
of bounded linear functionals defined on E and > 0 is an arbitrary
positive number.

Since, for any fixed x0e E, f(x0} may be considered as a bounded
linear functional defined on E, every neighbourhood in the topology
(WT2) is also a neighbourhood in the topology (WT3). Hence the topo-
logy (WT3) is not weaker than the topology (WT2). The converse is
not always true and we have the

Theorem 1. The necessary and suffwient condition that a Banach
space E s regular, is that the two weak topologies (WT2) and (WTa)
are equivalent in E.

This theorem may be considered as a generalization of a theorem
of S. Banach.D For the proof of Theorem 1 we need the Theorem 2
in 3. We omit the proof.

3. Weakly closed and regularly closed set of functionals. Let F
be a set of bounded linear functionals defined on E (i. e. F is asubset
of E). F is called to be weakly closed (as a set of functionals), if it

is closed in the weak topology (WT2) in E, and / is called to be re-
gularly closed (as a set of functionals), if there exists for any fo e E-F
a point xo e E such that f0(x0) 0 and f(xo)= 0 for any fe F. It is clear
that the regular closedness implies the weak closedness, and as to the
converse we have the

Theorem 2. If F is a linear subset of E, then the weak closedness
of F is equivalent to the regular one.

The proof of Theorem 2 may be easily carried out in an elementary
way. We omit the proof.

Corollary 1. For a linear subset of E, the three notions of closure"
weak, regular and the transfinite are equivalent.

The coincidence of the last two closure properties was proved by
S. Banach.2

1) S. Banach- Thorie des operations linaires, p. 131, Thorme 8.
2) S. Banach, loc. cit., p. 121, lemme 3.
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Corollary 2. In order that a Banach space E is regular, it is
necessary and su.cient that E is closed in E in the weak topology of
E as functionals defined on E.

Since E is total as a set of bounded linear functionals defined on
E, the necessary and sufficient condition for E--E is that E is regu-
larly closed in E as a set of functionals defined on E. This is a result
of S. Banach,) and our corollary is a direct consequence of this fact
and Theorem 2.

This corollary is also a direct consequence of Helly’s theorem,
which will be proved in 4. H. Goldstine2) also obtained the analogous
result, that the necessary and sufficient condition that E is regular is
that E is J-weakly closed in E. It will be easily seen that the result
of H. Goldstine is a direct consequence of Helly’s theorem, and that
in this case the -weak closedness of E is equivalent to the weak
closedness of E in the weak topology of E as functionals.

4. Helly’s theorem. Let E be a Banach space and let
(i= 1, 2, ..., n) be a system of bounded linear functionals defined on E.
Given a system of real numbers {c} (i--1, 2, ..., n) and a positive
number M O, the necessary and su2ient condition that there exists
for any 0 a point xoe E such that

(1) ilxol[M/e and f(xo)=c for i=1,2,...,n,

is that we have

(2)

for any system of real numbers (} (i=1, 2, ..., n).
Proof of Helly’s theorem due to Y. Mimura. Since the necessity

of the condition is clear, we shall only prove that the condition is
sufficient. Consider the linear transformation x--)Tx= {](x), f2(x), ...,
f(x)}, which maps the Banach space E into the n-dimensional Euclidean
space R. Let S be the sphere x <: M+ of E. We shall prove that
the image T(S) of S in R by this transformation T contains the point
Po={c, c,, ..., c,} of RL For this purpose, assume on the contrary
that Po does not belong to T(S). Since T(S) is clearly convex, there
exists in R an (n-1)-dimensional hyperplane which passes through P0
and which touches the convex set T(S). In other words, there exists

a system of real numbers {2} (i=1, 2, ..., n) such that

and ) 1 for any point (, e., ..., .} e T(S), or equivalently
i-1

J (x) 1 for any x e E with x <2 M+. Since the least upper

bound of ]2f(x) for Ilxll<M/e is (M+)-2f, we have

1) S. Banach, Ioc. cit., p. 117, Remarque.
2) H. Goldstine: Weakly complete Banach spaces, Duke Math. Journ., 4 (1938),

125-131.
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(M+)- f < 1 , c. Since :> 0 is positive, this contradicts
;-I

the assumption (2). Hence the point P0 (el, Of, -.., Vn} must belong to
T(S), i.e., there exists a point xoeE such that the condition (1) is
satisfied.

Corollary. Let Xo(f) be an arbitrary bounded linear functional
defined on the conjugate space E of E. Then there exists, for any
system of bounded linear functionals {f(x)} (i= 1, 2, ..., n) defined on
E, and for any positive number O, a point Xo e E such that

(3) ro <: Xo + and Xo(f3--j(Xo) for i= 1, 2, ..., n.

5. Mean Ergodic Theorem in uniformly convex Banach spaces.
A Banach space is called to be uniformly convex if there exists for
any e> 0 a () > 0 such that x _<_ 1, y < 1 and x-y >__ imply

Ilx+yl[_<_2 (1-()). It is clear that we may assume that ()is
continuous in e.

Theorem 3. Every uniformly convex Banach space is regular.
Proof. Let E be a uniformly convex Banach space. We shall

prove that, for any bounded linear functional Xo(f) defined on the con-
jugate space E of E, there exists a point xoeE such that Xo(f)-f(xo)
for any fe E. Since the case X0(f)=0 is trivial, we may assume that
X0 II--1. u.b. Xo(f) 1. Then there exists a sequence {f} (i= 1, 2, ...)

I11_1

from E such that !I II- 1 and Xo(f,) > 1 1In for n 1, 2, Taking
in consideration only the first n terms f,fz,-.-,f of this sequence,
we see, from the corollary of Helly’s theorem, that there exists for
each n a point x, e E such that x. <: 1+ 1/n and f(x) X0(f3 for
i=1, 2, ..., n.

We shall prove that the sequence (x.} (n=l, 2, ...) thus obtained
is a fundamental sequence in E. For this purpose, assume on the
contrary that this is not the case. Then there exists a positive number
:> 0 and an increasing sequence of positive integers n <m <: nz <
m <2 <: n <: m <: such that x,-x >__ for k= 1, 2,

Since limllx.ll<=l, we have, from the uniform convexity of E,
]in = + __< 2 (1 a(e)) <2 2.

On the other hand, from the definition of z, and (n <: m),
we have f,(z=) Xo(f,) and f,(z,)=Xo(f) for k 1, 2, This

will, however, lead to the contradiction with the inequality just ob-
tained; for, we have

2(1-1/n) <: 2- Xo(f%)=f,u(x,+x,) < IIf, I1" /x
k Ii-I! x,k/x,k

for k 1, 2, ..., and consequently lim x,u+x,, 2. lim (1 1/nu) 2.

Thus we have proved that the sequence {x,} (n=l, 2, ...)is a
fundamental sequence in E. Let Xo be the limiting point of this
sequence. This x0 clearly satisfies the condition"
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(4) 0 [[= 1 and f,(x0) =X0(f,) for n=l, 2,

The second relation is clear, and the first follows from the fact that
we have 1-1In <: Xo(f,)=f,,(xo) Ilf,,l[-IlXo[[-l[zoli for n=l, 2,

Now we shall prove that this 0 is a required one. For this pur-
pose, we first remark that such an x0 is uniquely determined by the
relation (4). This follows directly from the uniform convexity of E.
For, if there exists another with the same property (4), then we

have I[x0+xl[ 2 (1-J([[o-ll)) <=2 and f,,(Xo+)=2.Xo(f,,) for n=
1, 2, This is, however, a contradiction, since the latter implies
2(l-l/n) <2.Xo(f,)=f,(xo+X) llf,,ll-IIo-t-ll=lixo/ll for n=l,
2

Next we shall prove that this xo satisfies Xo(f)=f(xo) for any

fe E. In order to prove this, take an arbitrary foe E and consider the
sequence {f.} (n=0, 1, 2, ...). If we define x’ e E by the conditions"
x’ <: 1+ 1In and Xo(3) =(x’) for i=0, 1, 2, ..., n, (using the corollary
of Helly’s theorem), then the sequence (x’} (n=l, 2, ..., n) thus ob-
tained is also a fundamental sequence in E. This may be proved in
just the same way as in the preceding. Let x be the limiting point
of this sequence {x} (n= 1, 2, ...). x also satisfies (4) and the addi-
tional relation" fo(x)=Xo(fo). Since x0 is uniquely determined by (4),
we must have xo=x, and consequently xo satisfies the relation fo(x0)
Xo(f0). Since fo is an arbitrary functional from , the proof of Theorem
3 is hereby completed.

Since every regular Banach space is locally weakly compact we
have the

Corollary. Every uniformly convex Banach space is locally weakly
compact.

Using the last corollary we can easily prove the following
Theorem . (Mean Ergodic Theorem in regular or uniformly

convex Banach spaces). Let T be a bounded linear transformation
which maps a regular or a uniformly convex Banach space E into
itself. If there exists a constant C such that TI! C for n= 1, 2, ...,
then there exists a bounded linear transformation T, which maps E
into itsdf, such that

lim __1 (T

exists strongly for any x e E, and TT TT=T= T.
This is indeed a direct consequence of the Mean Ergodic Theorem

in Banach spaces, which was proved by K. YosidaD and the author.-)

This result was recently proved directly by Garrett Birkhoff for uni-
formly convex Banach spaces under the assumption that C-1.

1) K. Yosida" Mean ergodic theorem in Banach spaces, Proc. 14 (1938), 292-294.
2) S. Kakutani- Iteration of linear operations in complex Banach spaces, Proc.

14 (1938), 295-300.


