101. Concircular Geometry III. Theory of Curves.

By Kentaro Yano.
Mathematical Institute, Tokyo Imperial University. (Comm. by S. Kakeya, m.I.A., Nov. 12, 1940.)

In the two recent papers " Concircular Geometry I, and II^{1}," we have considered concircular transformations $\bar{g}_{\mu \nu}=\rho^{2} g_{\mu \nu}$ of a Riemannian metric $d s^{2}=g_{\mu \nu} d u^{\mu} d u^{\nu}$, that is to say, conformal transformations $\bar{g}_{\mu \nu}=$ $\rho^{2} g_{\mu \nu}$ with the function ρ satisfying

$$
\rho_{\mu \nu} \equiv \frac{\partial \rho_{\mu}}{\partial u^{\nu}}-\rho_{\lambda}\left\{{ }_{\mu \nu}^{\lambda}\right\}-\rho_{\mu} \rho_{\nu}+\frac{1}{2} g^{a \beta} \rho_{a} \rho_{\beta} g_{\mu \nu}=\phi g_{\mu \nu},
$$

where ρ_{μ} denotes $\partial \log \rho / \partial u^{\mu}$ and $\left\{\begin{array}{l}\lambda \\ \mu \nu\end{array}\right\}$ the three-index symbols of Christoffel formed with $g_{\mu \nu}$, and we have discussed the integrability conditions of these partial differential equations.

The purpose of the present note is to develop the theory of curves in the concircular geometry.
§ 1. Frenet formulae. Let us consider a curve $u^{\lambda}(s)$ in a Riemann space, s being the curve length measured from a fixed point on the curve, and form the vector

$$
\begin{equation*}
V^{\lambda}=\frac{\delta^{3} u^{\lambda}}{\delta s^{3}}+\frac{\delta u^{\lambda}}{\delta s} g_{\mu \nu} \frac{\delta^{2} u^{\mu}}{\delta s^{2}} \frac{\delta^{2} u^{\nu}}{\delta s^{2}} \tag{1.1}
\end{equation*}
$$

where $\frac{\delta}{\delta s}$ denotes the covariant differentiation along the curve.
If we effect a conformal transformation of the metric

$$
\begin{equation*}
\bar{g}_{\mu \nu}=\rho^{2} g_{\mu \nu}, \tag{1.2}
\end{equation*}
$$

the vector V^{λ} will be transformed into

$$
\begin{equation*}
\bar{V}^{\lambda}=\frac{1}{\rho^{3}}\left[V^{\lambda}+\frac{\delta u^{\lambda}}{\delta s} \rho_{\mu \nu} \frac{\delta u^{\mu}}{\delta s} \frac{\delta u^{\nu}}{\delta s}-g^{\lambda a} \rho_{a \nu} \frac{\delta u^{\nu}}{\delta s}\right] \tag{1.3}
\end{equation*}
$$

Hence, if the conformal transformation (1.2) is a concircular one, that is to say, if the function ρ satisfies

$$
\begin{equation*}
\rho_{\mu \nu}=\phi g_{\mu \nu}, \tag{1.4}
\end{equation*}
$$

the equations (1.3) become

$$
\begin{equation*}
\bar{V}^{\lambda}=\frac{1}{\rho^{3}} V^{\lambda} \tag{1.5}
\end{equation*}
$$

which shows that the direction defined by the vector V^{λ} is invariant under a concircular transformation.

[^0]Putting

$$
\left\{\begin{array}{l}
\frac{\delta u^{\lambda}}{\delta s}=\eta_{1}^{\lambda} \tag{1.6}\\
V^{\lambda}=\frac{1}{k} \eta_{2}^{\lambda}
\end{array}\right.
$$

where

$$
\left(\frac{1}{k}\right)^{2}=g_{\mu \nu} V^{\mu} V^{\nu}
$$

we can see that

$$
\begin{equation*}
g_{\mu \nu} \eta_{1}^{\mu} \eta_{1}^{\nu}=1, \quad g_{\mu \nu} \eta_{2}^{\mu} \eta_{2}^{\nu}=0 \quad \text { and } \quad g_{\mu \nu} \eta_{2}^{\mu} \eta_{2}^{\nu}=1 \tag{1.7}
\end{equation*}
$$

and that the law of transformations of η_{1}^{λ} and η_{2}^{λ} under a concircular transformation (1.2) is given by

$$
\begin{equation*}
\underset{1}{\bar{\eta}^{\lambda}}=\frac{1}{\rho} \eta_{1}^{\lambda} \quad \text { and } \quad \bar{\eta}_{2}^{\lambda}=\frac{1}{\rho} \eta_{2}^{\lambda}, \tag{1.8}
\end{equation*}
$$

respectively. The vector η_{2}^{λ} being transformed by (1.8), the covariant derivative $\frac{\delta}{\delta s} \eta_{2}^{\lambda}$ of $\frac{\eta_{2}}{\lambda}$ along the curve is transformed by the following equations
from which we have

$$
\bar{\eta}_{1}^{\bar{\eta}_{1}} \frac{\delta}{\delta \bar{s}} \bar{\eta}^{\nu}=\frac{1}{\rho}\left[\eta_{1} \frac{\delta}{\delta s} \eta_{2}^{\nu}+\rho_{\nu} \eta_{2}^{\nu}\right]
$$

or multiplying by $\bar{\eta}_{1}^{\lambda}=\frac{1}{\rho} \eta_{1}^{\lambda}$,

$$
\begin{equation*}
\underset{1}{\bar{\eta}^{2} \bar{\eta}_{\nu}} \frac{\delta}{\delta \bar{s}} \bar{\eta}_{2}^{\nu}=\frac{1}{\rho^{2}}\left[\eta_{1}^{\lambda} \eta_{\nu} \frac{\delta}{\delta s} \eta_{2}^{\nu}+\eta_{1}^{\lambda} \rho_{\nu} \eta_{2}^{\nu}\right] . \tag{1.10}
\end{equation*}
$$

Subtracting (1.10) from (1.9), we get the equations

$$
\begin{equation*}
\frac{\delta}{\delta \bar{s}} \bar{\eta}_{2}^{\lambda}-\bar{\eta}_{1}^{\lambda} \bar{\eta}_{1} \frac{\delta}{\delta \bar{s}} \bar{\eta}_{2}^{\nu}=\frac{1}{\rho^{2}}\left[\frac{\delta}{\delta s} \eta_{2}^{\lambda}-\eta_{1}^{\lambda} \eta_{1} \frac{\delta}{\delta s} \eta_{2}^{\nu}\right] \tag{1.11}
\end{equation*}
$$

which show that the direction defined by the vector

$$
\begin{equation*}
\frac{D}{D s} \eta_{2}^{\lambda}=\frac{\delta}{\delta s} \eta_{2}^{\lambda}-\eta_{1}^{k} \eta_{1} \frac{\delta}{\delta s} \eta_{2}^{\nu} \tag{1.12}
\end{equation*}
$$

is invariant under a concircular transformation.
From equations (1.7) and (1.12), we have

$$
g_{\mu \nu} \eta_{1}^{\mu} \frac{D}{D s} \eta_{2}^{\nu}=0, \quad g_{\mu \nu} \eta_{2}^{\mu} \frac{D}{D s} \eta_{2}^{\nu}=0
$$

Thus we see that the concircularly invariant direction given by the vector $\frac{D}{D s} \eta_{2}^{\lambda}$ is orthogonal to the both of concircularly invariant
directions given by the vectors ${\underset{1}{1}}_{\eta^{\lambda}}$ and ${\underset{2}{2}}_{\eta^{\lambda}}$. Thus putting

$$
\begin{equation*}
\frac{D}{D s} \eta_{2}^{\lambda}=\frac{2}{k \eta_{3}^{\lambda}} \tag{1.13}
\end{equation*}
$$

where

$$
\begin{equation*}
(\stackrel{2}{k})^{2}=g_{\mu \nu}\left(\frac{D}{D s} \eta_{2}^{\mu}\right)\left(\frac{D}{D s} \eta_{2}^{\nu}\right), \tag{1.14}
\end{equation*}
$$

we have

$$
\begin{equation*}
g_{\mu \nu} \eta_{a}^{\mu} \eta_{b}^{\nu}=\delta_{a b} \quad(a, b=1,2,3) \tag{1.15}
\end{equation*}
$$

Under a concircular transformation, the vectors $\underset{1}{\eta^{\lambda}} \underset{2}{\eta^{\lambda}}$ and $\underset{3}{\eta^{\lambda}}$ being transformed by

$$
\begin{equation*}
\bar{\eta}_{1}^{\lambda}=\frac{1}{\rho} \eta_{1}^{\lambda}, \quad \bar{\eta}_{2}^{\lambda}=\frac{1}{\rho} \eta_{2}^{\lambda} \quad \text { and } \quad \bar{\eta}_{3}^{\lambda}=\frac{1}{\rho} \eta_{3}^{\lambda}, \tag{1.16}
\end{equation*}
$$

respectively, we can see by the same process as used above that the vector defined by

$$
\begin{equation*}
\frac{D}{D s} \eta_{3}^{\lambda}=\frac{\delta}{\delta s} \eta_{3}^{\lambda}-\eta_{1}^{\lambda} \eta_{1} \frac{\delta}{\delta s} \eta_{3}^{\nu} \tag{1.17}
\end{equation*}
$$

is transformed as follows

$$
\begin{equation*}
\frac{D}{D \bar{s}} \bar{\eta}_{3}^{\lambda}=\frac{1}{\rho^{2}} \frac{D}{D s}{ }_{3}^{\eta^{\lambda}}, \tag{1.18}
\end{equation*}
$$

and that the vector $\frac{D}{D s} \eta_{3}^{\lambda}$ satisfies the equations

$$
g_{\mu \nu} \eta_{1}^{\mu} \frac{D}{D s} \eta_{3}^{\nu}=0, \quad \stackrel{2}{k}+g_{\mu \nu} \eta_{2}^{\mu} \eta_{3}^{\nu}=0, \quad g_{\mu \nu} \eta_{3}^{\mu} \frac{D}{D s} \eta_{3}^{\nu}=0,
$$

or

$$
\begin{cases}g_{\mu \nu} \eta_{1}^{\mu}\left(\underset{2}{k \eta^{\nu}}+\frac{D}{D s}{\underset{3}{3}}_{\nu}^{2}\right)=0, & g_{\mu \nu}^{2} \eta_{2}^{\mu}\left(\underset{2}{k} \eta^{\nu}+\frac{D}{D s} \eta_{3}^{\nu}\right)=0, \tag{1.19}\\ g_{\mu \nu} \eta_{3}^{\mu} \\ \left.k \underset{2}{2} \eta^{\nu}+\frac{D}{D s}{\underset{3}{3}}_{\nu}^{2}\right)=0,\end{cases}
$$

which show that the concircularly invariant direction given by the vector ${\underset{2}{2}}_{2}^{2}+\frac{D}{D s} \eta_{3}^{\lambda}$ is orthogonal to the three concircularly invariant directions given by $\eta_{1}^{\lambda}, \eta_{2}^{\lambda}$ and η_{3}^{λ}. Thus putting

$$
\underset{2}{2} \eta_{2}^{\lambda}+\frac{D}{D s} \eta_{3}^{\lambda}=\underset{4}{3}
$$

or

$$
\begin{equation*}
\frac{D}{D s} \eta_{3}^{\lambda}=-\frac{2}{k} \eta_{2}^{\lambda}+\underset{4}{3} \underset{4}{\eta^{\lambda}}, \tag{1.20}
\end{equation*}
$$

where

$$
\left(\stackrel{3}{2}^{2}=g_{\mu \nu}\left(k_{2}^{2} \eta^{\mu}+\frac{D}{D s} \eta_{3}^{\mu}\right)\left(\underset{2}{2}+\frac{D}{D s_{3}^{\nu}} \eta_{3}^{\nu}\right),\right.
$$

we have

$$
\begin{equation*}
g_{\mu \nu}^{\eta_{a} \eta_{b}^{\mu} \eta^{\nu}=\delta_{a b} \quad(a, b=1,2,3,4) .} \tag{1.21}
\end{equation*}
$$

Furthering this process, finally we obtain the following equations

$$
\left\{\begin{align*}
\eta_{1}^{\lambda} & =\frac{\delta u^{\lambda}}{\delta s}, \tag{1.22}\\
\eta_{2}^{\lambda} & =\frac{1}{2} \cdot V^{\lambda} \\
\frac{D}{D s} \eta_{2}^{\lambda} & =\frac{2}{k} \eta_{3}^{\lambda}, \\
\frac{D}{D s} \eta_{a}^{\lambda} & =-\stackrel{a-1}{k_{a-1}^{\eta^{\lambda}}+\stackrel{a}{k} \underset{a+1}{\eta^{\lambda}} \quad(a=3,4, \ldots, n, \quad \stackrel{n}{k}=0)} .
\end{align*}\right.
$$

These are the Frenet formulae in concircular geometry. ${ }^{1)}$
§ 2. Geodesic circles on hypersurfaces.
Let

$$
\begin{equation*}
u^{\lambda}=u^{\lambda}\left(u^{\mathbf{i}}, u^{\dot{2}}, \ldots, u^{\dot{n}-\mathbf{i}}\right) \tag{2.1}
\end{equation*}
$$

be the equations of a hypersurface V_{n-1} in our Riemannian space, u^{i} $(i, j, k, \ldots=\dot{1}, \dot{2}, \ldots, \dot{n}-\dot{1})$ being parameters for V_{n-1}. Then the fundamental tensor $g_{j k}$ and the Christoffel symbols $\left\{{ }_{j k}^{i}\right\}$ of V_{n-1} are respectively given by

$$
\begin{equation*}
g_{j k}=B_{j}^{\mu} B_{k}{ }_{k}^{\nu} g_{\mu \nu} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{\left\{_{j k}^{i}\right\}=B_{\cdot \lambda}^{i}\left(B_{j}^{\cdot \mu} B_{k}^{\nu}{ }^{\nu}\left\{{ }_{\mu \nu}^{\lambda}\right\}+B_{j, k}^{\cdot \lambda}\right)\right. \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{j}^{\cdot \mu}=\frac{\partial u^{\mu}}{\partial u^{j}}, \quad B_{\cdot \lambda}^{i}=g^{i j} g_{\lambda \mu} B_{j}^{\cdot \mu} \quad \text { and } \quad B_{j, k}^{\cdot \lambda}=\frac{\partial B_{j}^{\cdot \lambda}}{\partial u^{k}} \tag{2.4}
\end{equation*}
$$

The Euler-Schouten curvature tensor of V_{n-1} in V_{n} being defined by

$$
H_{j \dot{j}}^{\cdot \lambda}=B_{j, k}^{\cdot \lambda}+B_{j}^{\cdot \mu} B_{\dot{k}}^{\nu}\left\{\begin{array}{l}
\lambda \nu \nu
\end{array}\right\}-B_{i}^{\cdot \lambda}\left\{\begin{array}{l}
i j k \tag{2.5}\\
j k
\end{array}\right\},
$$

it is easily seen that the tensor defined by

$$
\begin{equation*}
M_{\ddot{j} k}^{\lambda}=H_{\ddot{j} \dot{k}}^{\lambda}-\frac{1}{n-1} H_{\cdot a}^{a \cdot \lambda} g_{j k}, \tag{2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{\cdot{ }_{k}^{i}}^{i}=g^{i j} H_{\ddot{j} \boldsymbol{k}}{ }^{\lambda}, \tag{2.7}
\end{equation*}
$$

is concircularly invariant.

[^1]Denoting by B^{λ} the unit vector normal to the hypersurface V_{n-1}, we can put

$$
\begin{equation*}
H_{\dot{j} \dot{k}}^{\lambda}=H_{j k} B^{\lambda} \quad \text { and } \quad M_{\dot{j} k}^{\lambda}=M_{j k} B^{\lambda}, \tag{2.8}
\end{equation*}
$$

$H_{\ddot{j} \dot{k}^{\lambda}}$ and $M_{\ddot{j} \ddot{k}^{\lambda}}$ being orthogonal to the hypersurface, if we regard them as vectors in V_{n} with respect to the index λ. Then the equations of Weingarten may be written as

$$
\begin{equation*}
B_{; j}^{\lambda}=-B_{i}^{i} H_{\cdot j}^{i}, \tag{2.9}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{\cdot j}^{i}=g^{i a} H_{a j} \tag{2.10}
\end{equation*}
$$

and the semi-colon denotes the covariant derivative.
We shall now consider a curve $u^{i}(s)$ on this hypersurface. This is also regarded as defining a curve $u^{\lambda}(s)$ in V_{n}. Then differentiating $u^{\lambda}(s)$ along the curve we have

$$
\begin{align*}
& \frac{\delta u^{\lambda}}{\delta s}=B_{i}^{\lambda} \frac{\delta u^{i}}{\delta s}, \tag{2.11}\\
& \frac{\delta^{2} u^{\lambda}}{\delta s^{2}}=B_{i}^{; \lambda} \frac{\delta^{2} u^{i}}{\delta s^{2}}+H_{\dot{j} k}^{\lambda} \frac{\delta u^{j}}{\delta s} \frac{\delta u^{k}}{\delta s}, \tag{2.12}\\
& \frac{\delta^{3} u^{\lambda}}{\delta s^{3}}=B_{i}^{\cdot \lambda} \frac{\delta^{3} u^{i}}{\delta s^{3}}+3 H_{\dot{j} k^{\lambda}} \frac{\delta^{2} u^{j}}{\delta s^{2}} \frac{\delta u^{k}}{\delta s}+H_{\dot{j k} ; h}^{\lambda} \frac{\delta u^{j}}{\delta s} \frac{\delta u^{k}}{\delta s} \frac{\delta u^{h}}{\delta s} . \tag{2.13}
\end{align*}
$$

From these equations, we obtain

$$
\begin{aligned}
\frac{\delta^{3} u^{\lambda}}{\delta s^{3}} & +\frac{\delta u^{\lambda}}{\delta s} g_{\mu \nu} \frac{\delta^{2} u^{\mu}}{\delta s^{2}} \frac{\delta^{2} u^{\nu}}{\delta s^{2}}=B_{i}^{: \lambda}\left(\frac{\delta^{3} u^{i}}{\delta s^{3}}+\frac{\delta u^{i}}{\delta s} g_{j k} \frac{\delta^{2} u^{j}}{\delta s^{2}} \frac{\delta^{2} u^{k}}{\delta s^{2}}\right) \\
& +3 H_{j k}^{\cdot \lambda} \frac{\delta^{2} u^{j}}{\delta s^{2}} \frac{\delta u^{k}}{\delta s}+H_{j k} \cdot \boldsymbol{\beta} ; \frac{\delta u^{j}}{\delta s} \frac{\delta u^{k}}{\delta s} \frac{\delta u^{h}}{\delta s} \\
& +B_{i}^{\cdot \lambda} H_{j k} H_{h l} \frac{\delta u^{i}}{\delta s} \frac{\delta u^{j}}{\delta s} \frac{\delta u^{k}}{\delta s} \frac{\delta u^{h}}{\delta s} \frac{\delta u^{l}}{\delta s} .
\end{aligned}
$$

Substituting, in these equations, the following relations

$$
\begin{aligned}
H_{\dot{j k}}^{\cdot \lambda}= & M_{\ddot{j k}}^{\bullet}+\frac{1}{n-1} H_{\cdot a}^{a \cdot \lambda} g_{j k}, \\
H_{\dot{j k} ; h}^{\cdot \lambda}= & \left(M_{j k} B^{\lambda}+\frac{1}{n-1} H_{\cdot a}^{a} B^{\lambda} g_{j k}\right)_{; h} \\
= & \left(M_{j k ; h}+\frac{1}{n-1} H_{\cdot a ; h}^{a} g_{j k}\right) B^{\lambda}-\left(M_{j k}+\frac{1}{n-1} H_{\cdot a}^{a} g_{j k}\right) B_{i}^{: \lambda} H_{\cdot h}^{i} \\
= & \left(M_{j k ; h}+\frac{1}{n-1} H_{a ; h}^{a} g_{j k}\right) B^{\lambda} \\
& \quad-B_{i}^{\cdot \lambda}\left(M_{j k}+\frac{1}{n-1} H_{\cdot a}^{a} g_{j k}\right)\left(M_{\cdot h}^{i}+\frac{1}{n-1} H_{\cdot b}^{b} \delta_{\hbar}^{i}\right),
\end{aligned}
$$

where

$$
M_{\cdot h}^{i}=g^{i j} M_{j h},
$$

we find

$$
\begin{align*}
\frac{\delta^{3} u^{\lambda}}{\delta s^{3}} & +\frac{\delta u u^{\lambda}}{\delta s} g_{\mu \nu} \frac{\delta^{2} u^{\mu}}{\delta s^{2}} \frac{\partial^{2} u^{\nu}}{\delta s^{2}}=B_{i}^{\lambda}\left(\frac{\delta^{3} u^{i}}{\delta s^{3}}+\frac{\delta u^{i}}{\delta s} g_{j k} \frac{\delta^{2} u^{j}}{\delta s^{2}} \frac{\delta^{2} u^{k}}{\delta s^{2}}\right) \tag{2.14}\\
& +3 M_{\ddot{j k} \cdot} \frac{\delta^{2} u^{j}}{\delta s^{2}} \frac{\delta^{2} u^{k}}{\delta s^{2}}-B_{i}^{\lambda}\left[M_{j k} M_{\cdot h}^{i} \frac{\delta u^{j}}{\delta s} \frac{\delta u^{k}}{\delta s} \frac{\partial u^{h}}{d s}\right. \\
& +\frac{1}{n-1} H_{\cdot a}^{a}\left(M_{\cdot h}^{i} \frac{\delta u^{h}}{\delta s}-\frac{\delta u^{i}}{\delta s} M_{j k} \frac{\delta u^{j}}{\delta s} \frac{\delta u^{k}}{\delta s}\right) \\
& \left.-\frac{\delta u^{i}}{\delta s} M_{j k} M_{h l} \frac{\delta u^{j}}{\delta s} \frac{\delta u^{k}}{\delta s} \frac{\delta u^{h}}{\delta s} \frac{\delta u^{l}}{\delta s}\right] \\
& +B^{\lambda} M_{j k ; h} \frac{\delta u^{j}}{\delta s} \frac{\delta u^{k}}{\delta s} \frac{\delta u^{h}}{\delta s}+\frac{1}{n-1} B^{\lambda} H_{\cdot a ; h}^{a} \frac{\delta u^{h}}{\partial s} .
\end{align*}
$$

Suppose now that any geodesic circles of the hypersurface V_{n-1} can also be regarded as a geodesic circle of the enveloping space V_{n}, then wo have

$$
\begin{align*}
3 M_{\dot{j} k} \ddot{H}^{\lambda} \frac{\delta^{2} u^{j}}{\delta s^{2}} \frac{\delta u^{k}}{\delta s} & -B_{i}^{\cdot \lambda}\left[M_{j k} M_{\cdot h}^{i} \frac{\delta u^{j}}{\partial s} \frac{\delta u^{k}}{\delta s} \frac{\delta u^{h}}{\delta s}\right. \tag{2.15}\\
& +\frac{1}{n-1} H_{\cdot a}^{a}\left(M_{\cdot h}^{i} \frac{\delta u^{h}}{\delta s}-\frac{\delta u^{i}}{\delta s} M_{j k} \frac{\delta u^{j}}{\delta s} \frac{\delta u^{k}}{\delta s}\right) \\
& \left.-\frac{\delta u^{i}}{\delta s} M_{j k} M_{h l} \frac{\delta u^{j}}{\delta s} \frac{\delta u^{k}}{\delta s} \frac{\delta u^{h}}{\delta s} \frac{\delta u^{l}}{\delta s}\right] \\
& +B^{\lambda} M_{j k ; h} \frac{\delta u^{j}}{\delta s} \frac{\delta u^{k}}{\delta s} \frac{\delta u^{h}}{\delta s} \\
& +\frac{1}{n-1} B^{\lambda} H_{\cdot a ; h}^{a} \frac{\delta u^{h}}{\delta s}=0
\end{align*}
$$

for any $\frac{\delta^{2} u^{i}}{\delta s^{2}}$ and $\frac{\delta u^{i}}{\delta s}$ arbitrary except the condition

$$
g_{j k} \frac{\delta^{2} u^{j}}{\delta s^{2}} \frac{\delta u^{k}}{\delta s}=0
$$

From the equation (2.15) we have

$$
M_{\dot{j} \boldsymbol{k}}^{\lambda}=\alpha^{\lambda} g_{j k},
$$

from which we conclude

$$
\begin{equation*}
M_{\ddot{j} \ddot{k}^{\lambda}}=0 \tag{2.16}
\end{equation*}
$$

because of the identity $g^{j k} M_{\ddot{j} \ddot{M}^{\lambda}}=0$.
Substituting (2.16) in (2.15), we have

$$
\begin{equation*}
H_{\cdot a ; h}^{a}=0 \tag{2.17}
\end{equation*}
$$

Thus we have the
Theorem. If any geodesic circle of a hypersurface V_{n-1} can be regarded as a geodesic circle of the enveloping space V_{n}, then the hyper-
surface is totally umbilical and the mean curvature is constant on the hypersurface.

Remark. The property that the mean curvature of a totally umbilical hypersurface is constant is not a conformal one, but is a concircular one.

For, under a concircular transformation (1.2), the Euler-Schouten tensor $H_{\ddot{\boldsymbol{j}} \ddot{\mu}^{\lambda}}$ being transformed by

$$
\bar{H}_{\dot{j} k}^{\lambda}=H_{\dot{j} k}^{\lambda}-g_{j k} \rho_{a} B^{a} B^{\lambda}
$$

we have

$$
\begin{equation*}
\rho \bar{H}_{\cdot a}^{a}=H_{\cdot a}^{a}-(n-1) \rho_{a} B^{a} . \tag{2.18}
\end{equation*}
$$

Differentiating this equation covariantly, we have

$$
\begin{equation*}
\rho \rho_{j} \bar{H}_{\cdot a}^{a}+\rho \bar{H}_{a ; j}^{a}=H_{a ; j}^{a}-(n-1) \rho_{a ; \beta} B^{a} B_{j}^{; \beta}+(n-1) \rho_{a} B_{i}^{a} H_{{ }_{j}}^{i} \tag{2.19}
\end{equation*}
$$

where

$$
\rho_{j}=\rho_{a} B_{j}^{\cdot a}=\frac{\partial \log \rho}{\partial u^{j}}
$$

Substituting

$$
\rho_{a ; \beta}=\psi g_{a \beta}+\rho_{a} \rho_{\beta}
$$

and (2.18) in (2.19), we find

$$
\rho \bar{H}_{\cdot a ; j}^{a}=H_{\cdot a ; j}^{a}+(n-1) \rho_{i} M_{\cdot j}^{i}
$$

or

$$
\begin{equation*}
\frac{\rho}{n-1} \bar{H}_{\cdot a ; j}^{a}=\frac{1}{n-1} H_{\cdot a ; j}^{a}+\rho_{i} M_{\cdot j}^{i} \tag{2.20}
\end{equation*}
$$

The equations (2.20) show that the property that the mean curvature of a totally umbilical hypersurface is constant is a concircular one.

[^0]: 1) K. Yano: Concircular Geometry I, Proc. 16 (1940), 195-200, and Concircular Geometry II, Proc. 16 (1940), 354-360.
[^1]: 1) The method of obtaining these conformal formulae was already indicated in K. Yano, Sur la connexion de Weyl-Hlavatý et ses applications à la géométrie conforme, Proc. Physico-Math. Soc. Japan 22 (1940), 595-621.
