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101. Concircular Geometry 111. Theory of Curves.

By Kentaro YANO.
Mathematical Ititute, Tokyo Imperial University.

(Comm. by S. KAKEYA, M.I.A., NOV. 12, 1940.)

In the two recent papers "Concircular Geometry I, and II,’’ we
have considered concircular transformations -- of a Riemannian
metric s--guu, that is to say, conformal transformations --2g with the function satisfying

p,w=- p,, P Pv gat PaP g,sv

where tOu denotes a log p/au’s &d. {Jr} the.three-index symbo]s o Chris-

The purose of the present note is. to develop t:he t:heory of eures
in the oncircuhr geometry.

space, s being the curve length measured from a fixed point on the
curve, and form the vector

(I.I) V- 5a 5

where denotes the covariant differentiation along the curve.s
If we effect a conformal transformation of the metric

(1.2) g%v=pgv

the vector V will be transformed into

Hence, if the conformal transformation (1.2)
that is to say, if the function p satisfies

(1.4)

the equations (1.3) become

(1.5)

is a concircular one,

which shows that the direction defined by the vector V is invariant
under a concircular transformation.

1) K. Yano- Concircular Geometry I, Proc. 16 (1940), 195-200, and Concircular
Geometry II, Proc. 16 (1940), 354-360.
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Putting

(1.6)

where

we can see that

Va=

(k)2-gu,VUV

(1.7) gv,y"=l, g,,,ari"=O and gy’=l,
1 2 22

and that the law of transformations of and under a concircular
2

transformation (1.2) is given by

(1.8) l__a and a=l_a,
p1 2 p2

respectively. The vector # being transformed by (1.8), the covariant
2

of along the curve is transformed by the followingderivative - 2 2

equations

(1.9)

from which we have
2 2

Subtracting (1.10) from (1.9), we get the equations

(1.11) . -, .
which show that the direction defined by the vector

(1.12) D = y_#,__y
D82 -82 11 8

is invariant under a concircular transformation.
From equations (1.7) and (1.12), we have

D g2. D y,=O.

Thus we see that the concircularly invariant direction given by
D is orthogonal to the both of concircularly invariantthe vector

2



directions given by the vectors and .
2

2

(1.13) D =kDs z

Thus putting

where

)(1.14) (k).=g. D

we have

(1.15) g,#= (a, b= 1, 2, 3).
b

Under a concircular transformation, the vectors y, y and y being
2 3

transformed by

(1.16) 7=1 =1 and =1
rtively, we n the me proce as d ave that the
vtor defin by

(1.17) D y y_y. 3 y
Ds 1

is transformed as follows

(1.18) D

_
1 D

D Ds3
D satisfies the equationsand that the vector

2

g D f=0 k+gu.7=O gu.ya, D =0

(1.19)

or

which show that the concircularly invariant direction given by the

k2+D_D_Ds3 is orthogonal to the three concircularly invariantvector

directions given by y, and y. Thus putting
2 3

or

(1.20)

where

+_D_Dy=k Ds 3

2 3D f=-k +k
Ds3 ’
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we have

(1.21) g,7’7 =ab (a, b= 1, 2, 3, 4).
b

Furthering this process, finally we obtain the following equations

(1.22)
2D =k
-1D k +/c-Dsa a-1 a+l

(a=3,4,...,n, k=O).

These are the Frenet formulae in concircular geometry.1
2. Geodesic circles on hypersurfaces.

Let

(2.1) u u (ui, u;, ..., u;*-i)
be the equations of a hypersurface V-I in our Riemannian space, u

(i, 3", k, i, , ..., -i) being parameters for V=_. Then the funda-
mental tensor g and the Christoffel symbols {]} of V-I are respec-
tively given by

(2.2)
and

(2.3)

where

(2.4)

(:J-B., (B’B’" {,} +

The Euler-Schouten curvature tensor of V,- in V, being defined
by

(2.5)

it is easily seen that the tensor defined by

(2.6) MJ H, 1 H.’g,
n-1

where

(2.7) Hf’ =g’H’.,
is concircularly invariant.

1) The method of obtaining these conformal formulae was already indicated in
K. Yano, Sur la connexion de Weyl-Hlavat et ses applications /t la gomtrie con-
forme, Proc. Physico-Matb_ Soc. Japan 22 (1940), 595-621.
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Denoting by B the unit vector normal to the hypersurface V_,
we can put

(2.8) Hj=/-/B and Mj.’=MB,
HiJ and Mj-iJ being orthogonal to the hypersurface, if we regard them
as vectors in V. with respect to the index 2. Then the equations of
Weingarten may be written as

(2.9) B:= -B;H.
where

(2.10) H.=g’H,
and the semi-colon denotes the covariant derivative.

We shall now consider a curve u(s) on this hypersurface. This is
also regarded as defining a curve u(s) in V. Then differentiating
u(s) along the curve we have

(2.11) u B} 3u
s s

(2.12)

(2.13)

From these equations, we obtain

where

Substituting, in these equations, the following relations

=(M,. +
--1

____(Mik.h_}_ 1 )Bn- 1
H. g

Mf=gMa

IHf,g)B}Han--1
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we find

(2.14) u u u=B; -+-sm s s/

+3Mi, 3u 32u B [MM 3u 5u 5ua
s s2 .a s s ds

O #t 5uh +_1__ BaH? h
JS 3S S n--1

Suppose now that any geodesic circles of the hypersurface V._
can also be regarded as a geodesic circle of the enveloping space V.,
then wo have

(2.15) 3M’
(2u U-BM Ms2 s s 8 8

+_ 1 H [M. uh 5u M 8u
n-1 ", .h

S 5S S

for any

+ 1 BaH Buh

n-1 s
2u and #u--- arbitrary except the conditions

82u ug s

From the equation (2.15) we have

M’ ag
from which we conclude

(2.16) Mj’=O

because of the identity gM-iJ O.

Substituting (2.16) in (2.15), we have

(2.17) H?; h=0.

Thus we have the
Theorem. If any geodesic circle of a hypersurface V,_ can be

regarded as a geodesic circle of the enveloping space V,, then the hyper-
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surface is oally umbilical and he mean curvature is consan on he
hypersurface.

Remark. The property that the mean curvature of a totally um-
bilical hypersurface is constant is not a conformal one, but is a con-
circular one.

For, under a concircular transformation (1.2), the Euler-Schouten
tensor H-;J being transformed by

H’a H’a gBBa
we have

(2.18) pHa.a=/-L-(n- I) paB

Differentiating this equation covariantly, we have

(2.19)

where

Substituting

p#_ p,,B= log p
u

and (2.18) in (2.19), we find

p/-/."; H?;+(n-1)pi .

The equations (2.20) show that the property that the mean curvature
of a totally umbilical hypersurface is constant is a concircular one.

or

(2.20) P 2-- 1
n 1

"’;’ H.;+pM..
n-1


