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By Kentaro YANo.
Mathematical Institute, Tokyo Imperial University.
(Comm. by S. KAKEYA, M.LA., Dec. 12, 1940.)

In three previous papers,” we have considered the Concircular
Geometry, that is to say, the geometry in which one seeks for the pro-
perties of Riemannian spaces invariant under the conformal transforma-
tions of the metric

ng:nguv (l’ /‘, Y, “'=1’ 2’ 3’ Tty n)9
with functions p satisfying the following partial differential equations

_2 1
P =L — {3} — 0,0, + =G 0uP P 1= P (pﬂ= a—l"g—”) .
o’ 2 ou”

In the present paper, we shall deal with the theory of subspaces
in the concircular geometry.

§1. Let us consider a subspace V,, immersed in a Riemannian
space V, whose parametric representation is

(1.1 w=urul 2 ..., u™)

where () and (&) (4,5, k, -..=1,2, ..., m) denote the coordinate systems
of V,, and V,, respectively. A conformal transformation

(1.2) auv=Pzg/w
of the fundamental tensor of V,, being a concircular one with the
function p satisfying the equations
_ 1
(1'3) P/w=P,u;u—Pupu'l'EgaﬁpaPBguu:?)gnv ’

where the semi-colon denotes the covariant differentiation with respect
to the Christoffel symbols {1} formed with g,,, the induced conformal
transformation

(1.4 Gik=PGix
of the fundamental tensor
Dy . ou”
(1.5) 0x=0nByBi  (Br=2%)

of the subspace is not in general a concircular one.

1) K. Yano, Concircular Geometry I, Proc. 16 (1940), 195-200, II, Proc. 16 (1940),
359-360 and III, 16 (1940), 442-458.
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We shall, first, seek for the subspace V,, for which the induced
conformal transformation is also a concircular one.

Putting
(1.6) ijEPj;k’_PiPk'F‘;_gabPaf’bgjk’
where
_ologp _
(107) Pi= - IIB:I ’

au

and p;,; denotes the covariant derivative of p; with respect to the three-
index symbols of Christoffel {} formed with g;, we obtain

(L.8) p,-k=pmyB;"B,;"+pﬂH;-,;”—pupyB;”B,;"+%mB;“Baﬁg“g,wB;-"B;:
or

(1.9) Pir= pﬂvB 7B +p Hi" —?PnPﬂBA B Gir

where B;* (A, B, ...=7h+i, ...... ,m) are n—m mutually orthogonal unit
vectors normal to V,, and

(1.10) H; "=%§L+B"Bkﬂ{aﬁ} B3}

The conformal transformation (1.2) being a concircular one, we
have

p ny = ¢g,uv .
Substituting these equations in (1.9), we have

(L.11) = puli+ (9 & PupaBLBE ) 0ic.

If we suppose that the induced conformal transformation (1.4) is
also concircular, we must have the equations of the form

(1.12) puMt=0
where
(1.13) Mj#=Hjr— %g“H;a"gjk .

Conversely, if the equation (1.12) is satisfied, it is easily seen that the
conformal transformation (1.4) is a concircular one.

Thus we have the following theorems:

Theorem I. The mnecessary and sufficient condition that a concir-
cular tramsformation of the fumdamental tensor of a Riemannian space
induce a concircular transformation on a subspace is that the function
p satisfy the equations p,M;*=0 as well as (1.3).

Theorem II. The conformal tramsformation induced on a totally
umbilical subspace by a concircular transformation is always a con-
circular one.
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§2. We have seen, in a previous paper,” that the curvature
tensor of V,, defined by

R
2.1 Zo=Rhy— (0,402 — G’
(2.1) o =Rua =0 05 (995 — )

is a concircular invariant. When the subspace V,, is not a totally um-
bilical one, the curvature tensor of V,,

(2.2) Zin=Rign— g(ab “1) (9195 — gindh)
where . )
(29 Rj= 20 a0 () - ()

is not in general a concircular invariant.
But the Weyl conformal curvature tensor

(2.4) Cin=Rin— }_ 2 (Rix0h— Rindi+ ginRin— ginR')

il X
T m—Dm—2

is, of course, a concircular invariant. This conformal'curvature tensor
Ciwn may be expressed by means of Zi, and Z;=Zk%; as follows:

(95%0% — 9ind%)

(2-5) C.;.'kh=Z§‘kh

where

(ngai .ﬂlsi-'-gjkz | thZ k)

Z=9"Z s, .

We shall, in the following, establish the relations between the con-
circular curvature tensor Z4,, and the conformal curvature tensor
Cia.  The equations of Gauss of V,, in V,, are

(2.6) Rin=BsR: o+ Hi Hiyy — H H,y
where
Biis=B,ByByB?, Bi=¢%g, By and Hh=g"%q.Hi".
Contracting (2.1) with B, we have

B}é‘/’é‘:‘;’ /xm= Bﬁf;l:zR}wm ( _1) (g.ﬂc‘?}z g]ha;a)

Then substituting these equations in (2.6), we obtain
(2.7 Riw=BEeZi.+H; Hy,— HjHy, +
From (2.7), we find by contration

( ) (guﬁh g:ha;c)

1) K. Yano: Concircular geometry I. loc. cit.
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(2.8) Riy=Bi§B3Z},,+ H;i H%, — H  H, + {m=1) Rg;,

nfn—1)
and
(29)  g*R;=B*B3Zh, + HEAHY, — HS HY, + %Ehmf—ll))‘ R,
where

B4=BiB, B%=BiBi, B”=Bug®, and HYW'=g¢"Hj}.
The equations (2.7), (2.8) and (2.9) give us

B*BiZ}ve

2.10 Zon=BeZ . —
(2.10) =Bl == )

(9%9% — g5n0%)

a-i Hb . R
HHoa (9x0% — 9in%)

+ Hji Hiny — Hji Hia—
m(m—1)

a-2 Iyb 3 R
+ Hi'Har (97%9% — 9ind%)
m(m—1)
and

@11)  Zp=ByB3Zh,—~ —}; B*B3Z4, 05+ H;i HY,y
—H3 HY — 1 H%H%,gq+ 1 H% H,9:% -
m m

Substituting the equations (2.10) and (2.11) in (2.4), we obtain

(212)  Chu=Zin— 1 (Zudh ~ Zadi+ 02— 02 2%)
=BiitZ— 2 (BBIZ Lt~ BRBIZ b
+ gkangal,ng }lum - gathll;B?gu iZ }Jva))
1y 4 . . i |
+ ——FB_ ﬁ?i" e 2) (95105 — 9ind%) + Hyi Hipy — Hp H'yy
a-AJb . R a-2 b . .
— HlHo (920% — 9;n0%) + H5 Hear (959% — 9:n5%)
m(m—1) m(m—1)
Ry 1_ 2 [H i H% 105 — Hin  H% 0%+ g H '3 Ho

— 9inH 5 H — H3 H%30% + Hj " Ho% 305 — 9 H'y Hon
. a-A EJb . R
+ginH 3 Hoy — —ML’JI{& (929% — 9in0%)

a-ATTh . i
+ _&%@ (907 — g"’m‘)] )

We have, on the other hand,
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Hgk —Mgkl'l' Ha ik »

Hipy=Mi+ %Hf’aﬁi ’ (M =9%q1, M) .

Substituting these equations in (2.12), we obtain finally

213)  Ziu—— L (Zadh— Zpdit 02— g )

= BYaZhy— L (BEBYZ ik~ BEBIZ b0k

+ 9B B9 2} — 9in Bat B39% Z )
%% (9:19h — gindie)+ M Misa — M5

1_ 2 [(gjkM CAM %+ MG AM%,0%)

— A MS M M) |

_ M%M,
(m—1)(m—2)

The left member of (2.13) representing the Weyl conformal cur-
vature tensor, the equations (2.13) are the equations of Gauss of V,
in V,, in our concircular geometry.

§8. Let B4 (4,B,C,...=m+1,m+2, ...,m) be n—m mutually
orthogonal unit vectors normal to the subspace V,, then the equations
of Weingarten may be written in the form

(3.1) Bi}j=—B}H%a+ L5;Bi*

(95%0% — gin0%) -

where we have put
H%a=0,,H%*B,* and Lag;=9,.Ba;Bs" .
From (3.1) we can derive the equations of Codazzi
(32) BnRl,=—Hia.1+Hiza:i+ HipLas— HixsLag;

where
Bis=BB4"ByB;” .

Multiplying (2.1) by B%% and contracting with respect to the in-
dices 2, #,v and o, we find B¥%4Z%,,=B¥%R%,,, consequently
(3.3) B}‘j";‘,’,Z;‘,w= —'H?jA;k+H?kA;j+HijLABk—kaBLABj .

These are the equations of Codazzi in our concircular geometry.
From (3.3) we can conclude that the tensor whose compoments
are
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(3.4) —Hijp 0t Higa: s+ HipLape— HisLoas

is a semi-concircular tensor, that is to say, it will be multiplied by a
power of g by the concircular transformation.

If we consider a hypersurface V,; in V,, and denote by B* the
unit vector normal to V,.,, we have

(3.5) H;JA=H”B‘ ’ LAB_,:O
and the equations (3.3) reduce to

B4 B*B4Z},,= — Hi;. p+ HY, .
or

(3.6) BLB'BEZL.=— M.+ M. —— L HY% i+ L H 5
n—1 n—1
where
Hiy=g¢"Hy, Mi'=M;B' and Mi=g"M;,.

§4. In this paragraph, we state some of theorems which may be
easily deduced from the formulae proved in three preceding paragraphs.
They are all well known theorems, but it may not be of no use to
emphasize here that they are theorems which may be considered in the
concircular geometry.

Theorem III. A totally wmbilical subspace in a concircularly flat
space 138 also concircularly flat.

Proof. For a totally umbilical subspace, we have H;;,‘=~71;; H%*g;.
In such a case equations (2.10) become

. . uy A . .
(4.1) Zyn= B’ﬁl’éﬁzﬁm——BﬁZﬂ”‘ (9:10% — 9in0%)-
m(m—1)

Thus we can see that if the enveloping space V, is a concir-
cularly flat one (Z%,,=0), the subspace is also concircularly flat one
(Zixn=0).

Theorem IV. The mean curvature of totally umbilical hyper-
surface in a concircularly flat space is comstant,

Proof. The conditions Z2,,=0, M;;=0 and equations (3.6) give us

HY,.,0i—H%.0i=0
from which we have

(402) H-ua; k= 0 .

Thus the theorem is proved.

Theorem V. If there exists always a totally umbilical hypersur-
face of constant mean curvature touching an arbitrary hyperplane
passing through any point of the enveloping space, then the enveloping
space 18 concircularly flat.
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Proof. M% and HY.; being zero, we have from (3.6)

4.3) Bi\,B"B#Z},0=0,
which must be satisfied for any B;* and B? satisfying
9:.B*B*=0.
Consequently we have from (4.3)
Z%,.=0.

This proves the theorem.



