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16. Boundar Values of Analytic Functions.

By Shunji KAMETANI.
Taga Higher Technical School, Ibaragi.

(Comm. by S. KAKEYA, M.I.A., March 12, 1941.)

I. Given a rectifiable simple Jordan curve C with length c in the
Gaussian plane by the equation t t(s) (s)+i(s) (, being real)
where the parameter s is the arc length measured from a certain fixed
point to to t in the positive sense along C, so that it varies in the
interval [0, c], the functions $(s) and y(s)or t(s), where we have t(O)=
t(c), satisfying Lipschitz condition on [0, el, are absolutely continuous,
and at almost every point s of that interval, have derivatives such that

(’(s))-t (/(s))’- It’(s)I-- 1.

that f(O=f((s)+i(s))=f((s)) is a measurable functionSuppose

of s defined on C. Then, by the Lebesgue integrals f(t)dt and
JC

f(t)dt= f(t)dt, L being an arc E(s s s) with end points
L t

t=t(s) (3"=1, 2), we mean the Lebesgue integrals ./ f(t(s)) t’(s)ds and

["f(t(s)) t’(s)ds respectively, where t’(s)=’(s)+i’(s).
J’’81

It may be needless to say that the integrals of this kind are the
generalisation of the ordinary contour integrals of a complex variable.
Let us remark here that, among others, the theorem concerning dif-
ferentiation of an indefinite integral and the theorem of integration by
parts remain valid also for our integrals, so that, for instance, writing

F(O= )d, where 0--(0), we have, or almos all the values o s,

=AO,
and also we have

I f(t)dt_[_F(t(s))+l F(t)dt
c t-z t(s)-z c (t-z)

F(t)dt
c (t-z)

since t(c)=t(O).
II. Let D and D’ be the interior and the exterior of C respec-

tively and we shall denote the points of D and D’ by z and z’ respec-
tively. Now we shall consider the analytic function (z) defined by
the following integral:

(,) (z)= 1 Ict-z
If f(t) is given continuously on C, it is evidently necessary for (z) to
tend to f(t) as z- t for every point t of C, that we should have
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(1) I f() d 0 for every z’,
c --Z’

the equivalent relations f($)$d$ 0 (m 0, 1, 2, ...).or
C

Among other writers, Prof. Kakeya has obtained a condition to be
satisfied by C for the sufficiency of (1).

Priwaloff has shown that, in order that (z) tend to f(t) for almost
all the points of C (namely, for every point t, except perhaps points
belonging to a set, which corresponds to a set of measure zero, in the
interval of s), as z tends to t along any line not touching C, it is
necessary and sufficient that the condition (1) should hold, provided only
that f(t) is integrable on C2.

His proof the essential part of which is devoted to verify the
sufficiency depends upon the idea of Cauchy’s principal value and re-
quires long calculations.

We shall now prove, by the elements of Lebesgue’s theory and the
method suggested by Prof. Kakeya’s paper cited above, a theorem from
which we shall easily obtain, almost as its corollaries, the essential part
of Priwaloff’s result and moreover Fatou’s well known theorem.

III.
Theorem. If a bounded measurable function F(t) defined on C

satisfies the following conditions
(2) at h=t(s) where, we assume, t’(s) (I t’(s) I=1) exists, F(t) has

a finite differential coefficient .F’(t)=lim[{F(t)-F(t)}/(t-t)],
t->t

(3) I F(t) dt= 0 for every z’ e D’,
c (t-z’)

then the analytic function f(z) defined by the integral

1 I F(t) dt’ zeDf(z)= m c (t-z)

tends to F’(h) as z-- t, along any line not touching C.
Proof. From (3), we have

1 I F(t)dt-1 I F(t)f(z) =-=i c-i-t--Z- (t_z,)---- dt

(z-z’) [’c F(t) {2t-(z+z’)} dt.
2i (z-z)(t-z’)

We may choose z’ symmetric to z with respect to t if Iz-tl=r is
sufficiently small, since at t, C has a tangent on account of the ex-
istence of t’(s), so that we have z+z’=2h, from which follows

z-.z’ [ F(t) (t- t)dt(4) f(z) )c (t- z) (t- z’)2

1) S. Kakeya, On the bouadary Values of analytic Functions, Proc. 13 (1937).
2) I. Priwaloff, Sur quelques proprits mtriques des fonctions analytiques, Ann.

Ec. Polyt., (1925).
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If F is regular in D and on C, then it is evident that (4) holds good
and the integral on the right hand-side coincides with F’(z). In parti-
cular, we have

1 z,-_Z’ (t t)d
(t- z) (t z’)

or

(5)

and

F’(t)- z-_z’ I (t- t)F’(t) dt
m c (t-z)(t-z’)

O- z-z’ (t- tl)dt(6)
m Jc (t-z)(t-z’)"

We obtain from (4) and (5)

(7) (f(z)-F’(t))ri=(z-z’) I (t-t)[F(t)-(t-t)F’(t,)] dt
c (t-z)(t-z’)

We may clearly suppose that the point t=t(s) does not coincide with
to=t(O)=t(c). Then, by the existence of F’(h), there exists, to each
positive , a small arc C=E(I s-sl<= ), which contains t and does

not contain to, such that we have for every t e C
(8) F(t)=F(t)+(t-t)F’(t)+(t-t)2 and 121<::.

From (7), (8) and then (6), we have

(9) (f(z)_F,(t))=i=(z_z,)I (t-h)[F(t)+2(t-t)] dt
c (t-z)(t-z’)

(z-z’)
c (t-z)(t-z’) c

To prove our theorem, we have only to show, by (9), that there exists
a constant N, independent of z and z’ which are on any fixed line not
touching C at t,, such that

< N z’
c Iz’-zl "e’ if -zl=2r is sufficiently small,

since the other integral is obviously bounded as z-z’l=2r-- O.
JC-C

We denote by (0 <:: =) the angle made by the tangent of C at t
and the positive real axis. Suppose further the points z and z’ are on

the line that makes a fixed angle I1<-- with the normal line

of C at t, so that

z t:V tie(+) z tl tie(+) where z- t z’ t I= r.
Since t(s) has a differential coefficient of modulus 1 at %, we may write

t-t=(s-s) (t’(s)+/)=(e’+/), where ;=s-s, e=t’(s) and

(10) /-0 as s-s.
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We have, then

(t-z) (t- z’) {(t- tO :t: rie(a+’)} {(t- t) -tie(+)}
(e’+/)+re(+* e(+*)(e-(1+e-’) +r}

Hence, writing 1+ Ze-a (1 +)e-, so that 0 and a 0 as z 0,
we have

(11) ,(t-z)(t-z’) =(ae(l+)e-’(’+)+r)
=a(1 +3)+ 2 cos {2(+ a)}. a(1+)r+r

We have, by (10), Z0 as a0, and therefore cos{2(Wa)}cos
(20 as a0. Hence, if 0 on one hand, we have always
cos {2(+a)} k 1, taking a sufficiently small, since 2
and so, from (11)

(t-z)(t-z’) a(1-)t-2kae(l+Ore+r, (] < 1)

whose right hand-side will be of the positive definite form by choosing
a again so small that k(l+)(1-), which is possible becau 3 0
as 0. If, on the other hand, =0, then we have always cos (2a) 0
for sufficiently small a, so that, by (11)

I(t-z)(t-z’) (+)+r (-,)+r ([ l < 1)

whose right hand-side is also positive definite.
Writing, for brevity, H(a,r) for a(1-)-2ka(l+)r+r or

(1-)+f, we notice ha H(, )=rH, 1 =fH(r, 1) where

=r, and tha H(r, 1) has a ositive lower bound. Also we notice
{(, )}-=o (-/as .

Now le us return to eonsideration of the integral in (/.

Choosing or a sueiently small from the first, we have, by wha
have been discussed,

(t tl)Z2Ic (t-z)(t-z’)
dt I’ (2a)da< It tlldtl <

c I(t-z)(t-z’)I =e
-, H(,r)

The integral appearing on the right is surely convergent, since the
integrand is continuous and O(-) as - =i= , which proves our theorem
completely.

IV. Some applications. If an integrable function f(t) defined on
C satisfies the condition (1), then, by the remarks given in Section I,

we have {F(t)/(t-z’)}dt=O where F(t)= f(t)dt. Moreover this in-
C to

definite integral, being continuous, is bounded and has a differential
coefficient F’(t)=f(t) almost everywhere on C. Since t’(s) with modulus
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1 exists almost everywhere, the function f(z) in our Theorem tends to
F’(t)=f(t) for almost every point t of C, as z-- t along any line not
touching C. But integrating by parts, we find easily

1 I F(t)f(z) = 1 I f(t) dt

which proves the following theorem of Priwaloff.
Theorem of triwaloff. If an integrable function f(t) defined on C

satisfies the condition (1), then the analytic function (z) defined by the
integral (*) tends to f(t) for almost every point t of C, as z-- t along
any line not touching C.

Suppose now that C is a unit circle. Given a regular, bounded
function f(z) defined in the interior of C, we consider the integrated

function F(z)=.lf(z)dz. Evidently F(z)is not only regular in [z I<:: 1,

but also is continuous up to the boundary, and moreover, it satisfies
the Lipschitz condition on C, from which we ascertain the absolute
continuity of F on C, so that F(t) is an indefinite integral of its dif-
ferentiated function F’(t)=g(t). But by Cauchy’s integral formula,

11 F(t) dt, and integrating by parts, wehave f(z)=F’(z)=
m c (t-z)

we

_..1 Ic [g(t)/(t-z)]dt. Since Ic [F(t)/(t-z’)]d=O isfind this equal to 9.--.
obvious, it follows also that the condition (3) is fulfilled by F(t). Hence,
applying our Theorem, we have f(z) - F’(t)= g(t) as z- t, for almost
every t of C, along any line not touching C, which proves the following:

Theorem of Fatou. If f(z) is regular and bounded in z] 1,
then for almost every point t of the circle It I=1, f(z) tends to a limit
as z-- t along any line not touching the circle. Moreover, if we denote
the almost everywhere existing limits by g(t), we obtain the formula

1 I g(t) dt.f z) -i c t--z


