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1. Introduction. We denote by E a Banach space and by E- its
conjugate space. A set XE is called convex if x, y eE implies
ax+(1-a)yeE for all a(l:>a 0). According to M. Krein and V.
SmulianD, a set FE is called regularly convex if for every gF
(g e E) there exists x0e E such that sup f(xo) g(xo). It is easy to see

feF

that only convex sets in E may be regularly convex. Moreover we
may prove

Theorem 1. A convex set F E is regularly convex if and only

if F is closed in the weak topology of E as functionals.
Hereby, for any foe E, its weak neighbourhood U(f0, x, x2, ..., x.,

e) is defined as the totality of feE such that sup ]f(x)-fo(x)l ,
where {}_, is an arbitrary system of points e E and e is an
arbitrary positive number).

The purpose of the present note is to show that there exists a
kind of duality between (strongly) closed convex sets E and regularly
convex sets E. By this duality we may give, to almost all the
theorems in Chapter 1 of [K-S], geometrical interpretations and new
proofs. We then give a proof to Krein-Milman’sa)

Theorem 2. If a (strongly) bounded set F E is regularly convex,
1then F has extreme points fo, viz. points fo such that fo : 2 (g+h)for

any two g, h e F, g -fo, h :fo.
If E is separable, the above duality shows that Theorem 2 is an

immediate corollary of a theorem due to S. Mazur). The proof for
non-separable E is also given by tranfinite induction. This was obtained
by one of us (Fukamiya)" Zenkoku ShijyS-Sugaku Danwakai, 207
(Japanese). After the present note is completed, we received a letter
from S. Kakutani, now in Princeton, and we knew that F. Bohnenblust

1) Ann. of Math., 41 (1940), 556-583, to be referred as [K-S].
2) The importance of eak topologies in the theory of Banach spaces was especially

stressed on by S. Kakutani with much success" Proc. 15 (1939), 169-173 and 16 (1940),
63-67. We omit the easy proof of Theorem 1, since it is similar to his proof of the
equivalence between the transfinite closure and the regular closure of linear subspaces

E. The equivalence of the two notions" transfinitely closed convex sets E and

regularly convex sets E, was proved in [K-S], 569.
3) The vol. 9 of the Stud. Math. is not yet arrived at our institute. We knew

their result from M. and S. Krein’s paper" C.R. URSS, 27, 5 (1940), 427-430.
4) Stud. Math., 4 (1933), 70-84.
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also obtained the same proof. Kakutani also says in the letter that
Chap. 1 of [K--S] may be rewritten by his method (Theorem 1).

2. The duality. For any X E, let X* denote the totality of
fe E such that supf() 1. In the same way, or any set F E, let

Z

F’ denote the totality of e E such that supf(x) 1. Then we haveD
fee

Lemma 1. X*’* X*, F’*’
Proof. Surely X X*’ and F F’*. Moreover we have X X’

(F F) from X X (F F).
Theorem 3. For any X E, X*’ is the (s$rong) closure con-(X, O)

of the convex hull cony (X, O) of X and the zero vector 0 of E.
Proof. Surely we have X*’ cony (X, 0). If x0e X*’-conv (X, 0),

there exists, by Ascoli-Mazur’s theorem, an f0 e E such that fi(0) ::> 1
and fo() 1 at every econv (X, 0). Then foe X* and hence xo must
be X*’, contrary to the hypothesis. Thus we must have X*’=conv
(X, 0).

Theorem . For any F/, F’* is the closure con (F, 0)(in the
sense of weak topology of E as functionals) of the convex hull cony

(F, 0) of F and the zero vector 0 of E.
Proof. Surely we have F’* cony (F, 0). If foe F’*-conv (F, 0),

then there exists, by the definition of weak topology, e:> 0 and x,
x., ..., x, e E such that sup If() -f0() ::> at every f e cony (F, 0).

lin
Thus the point o= (fo(x),fo(x), ..., fo(x)) in n-dimensional euclidian

space E is of euclidian distance :> e from the convex point set
in E, where = (f(x), f(x), ..., f(x)), fe cony (F, 0). Hence, by

Ascoli-Mazur’s theorem, there exists real numbers a, a,, ..., a such that

,afo(x) ::> 1 and ] af(x) < 1 at every fe cony (F, 0). Put Xo=i=l i-l

then x0 e F’ by f(xo) 1. This contradicts to 1 <::f0(x0), f0 e F*. There-
fore we must have F’*=conv (F, 0).

By Lemma 1, Theorem 1, 3 and 4 we obtain the following duality

Theorem 5. Regularly convex set F E containing 0 is charac-
terised by the property that it is expressible as F--X*, XJE.
(Strongly) closed convex set X E containing 0 is characterised by the
property that it is expressible as X=F’, F_ E.

3. Boundedness of convex sets and regularly convex sets, Re-
gularly convex set F need not be (strongly) bounded. However we
may prove

Theorem 6. In order that a regularly convex set F be (strongly)
bounded, it is necessary and sufficient that 0 is the inner point of the
(strongly) closed convex set F’ E.

Proof. Let sup l[fl[--a<: , and assume that 0 is not an inner
fe F

point of F’. Then we have a sequence (x} E with the properties

1) Cf. Garrett Birkhoff" Lattice Theory, New York (1940), 24.
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xF’(i=l, 2, ...), lim Ilxll=0. This contradicts to ]f(x)l IIflI’lixll
x II, (i-- 1, 2,...), f F. For we have f(x) <:: 1, viz. x e F’ if

x --.1 Next let the sphere x

_
a, a > 0, of E be

_
F’, and as-

sume that F is not (strongly) bounded. Then there exists foe F such
that f0(x0) ::> 1 or fo(x0) <:: -1 at a point x0 with x0 a. Since -Xo
x0 II, Xo and -Xo both e F, and thus we must have a point x e F’ such
that fo(x):> 1. This contradicts to the fact that foe F.

Dually we may prove
Theorem 7. In order that a regularly convex set F contains 0 as

an inner point, it is necessary and sufficient that the (strongly) closed
convex set F’ be (strongly) bounded.

Proof. Let sup x If=a, 0 <:: a <:: o, then fe/ with llfll __1 sure-

ly belongs to F’* F. Next let the sphere IIfl[ a, 0 <2 a <2 , be
contained in F. By Hahn-Banach’s theorem, there exists, for any

x0 e E, an foe E such that Ilf0 1, fo(x0) x0 ]I. Thus we must have

x 1__ for any x e F’.

4. Existence of extreme points. Let E be separable and let a
(strongly) closed convex set X E contain 0 as an inner point. Then,
by S. Mazur’s theorem cited in 1, there exists boundary point Xo of
X at which we have one and only one tangential hyperplane. This
means that there exists one and only one foeE with the properties
f0(xo)=l, sup fo(x) 1. Such f0 is surely an extreme point of the

(strongly) bounded regularly convex set X*. Hence, combined with
theorem 5 and 6, we obtain a new proof of Theorem 2 in the special
case when E is separable.

In order to prove Theorem 2 for non-separable E we first prove the
Lemma 2. A (strongly) bounded regularly convex set FE is

bicompact in the weat topology of E as functionals.
Proof. Let su0 lifii---a, a<:: . The sphere G" Ilg[i a of E is

bic0mpact in the weak topology of E as functionals). Since, by
Theorem 1, F G is closed in the weak topology of E as functionals,
F is bicompact with G.

Proof to Theorem . Let, as above, suo Ilfll-a, 0 <2 a <:: , where

F is regularly convex. Well-order the points of the unit-sphere 1
of E as follows"

(1) x0, x, x., ..., x, ( <: ).

F is bicompact in the weak topology of E as functionals, by Lemma
2. Hence, for any x eE, the continuous function f(x) on F(feF)
attains its supremum and infimum on F. Let sup f(xo)=fl(xo), f e F,

f.F

1) See S. Kakutani" loc. cit.
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and let F be the totality of such f e F. F is convex and closed (in
the weak topology of E as functionals), and is thus bicompact. If F
contains only one point f, f is surely an extreme point of F and the
Theorem 2 is proved. Assume that F consists of more than one point,
and let x be the first point in the well-ordered sequence (1)which
satisfies f(x) - constant on F. Put a=ai and let sup fi(c)=f2(x),

flF
.f2eF, and denote by F2 the totality of such fieFs. In this way let
possibly transfinite sequence of convex, bicompact sets F F F2
F be defined for all $ $( y). If is not a limit ordinal,

let a_ be the least a such that f(x) constant on F,_. Let
sup f(x,_)=fi,(x_), fi, eF_, and define F as the totality of

such f$1 e F$1-1" If is a limit ordinal, put Fl=the intersection F.
$<$

As F are all bicompact, F is not void. We then define F, taking

F in place of F_ in the above argument.
Thus, assuming the process not to give any extreme point of F,

we define bicompact sets F for all y such that" F
F .... Then A F is not void. A F consists of only one point.

For, if A g e F, f g, then f(x) g(x) for a certain x x,

This contradicts f(x)=g(x,) (by f, g e F). Thus let fi= F, fi is

an extreme point of F. For the proof, take any two g, he F, g fi,
h fi. Then there exists the least such that g, h both eFt. Thus

1g(x), h(x,) both fi(x) for all a (. This proves that fi -:-(g+ h).
Z


