52. A Remark on the Theory of General Fuchsian Groups.

By Kiiti Morita.
Tokyo Bunrika Daigaku, Tokyo.
(Comm. by T. Takagi, m.I.A., July 12, 1941.)

Prof. M. Sugawara has recently introduced a notion of general fuchsian groups and developed a theory of automorphic functions of higher dimensions ${ }^{1}$. In the present note we shall show that there is another class of groups which can be treated with his method. The classical case of hyperfuchsian groups is included here as a special one (the case $m=1$ below).
§1. The space $\mathfrak{A}_{(n, m)}$. General thetafuchsian functions in $\mathfrak{A}_{(n, m)}$. Let us consider the set $\Re_{(n, m)}$ of all matrices of the type (n, m). The subset of $\Re_{(n, m)}$, whose elements are matrices satisfying the condition $E^{(m)}-\bar{Z}^{\prime} Z>0^{2)}$, shall be denoted by $\mathfrak{U}_{(n, m)}{ }^{3)}$. Now we put $S_{(n, m)}=\left(\begin{array}{cc}E^{(n)} & 0 \\ 0 & -E^{(m)}\end{array}\right)$. If a matrix U of order $(n+m)$ satisfies the condition

$$
\begin{equation*}
\bar{U}^{\prime} S_{(n, m)} U=S_{(n, m)} \tag{1}
\end{equation*}
$$

then the substitution

$$
\begin{equation*}
W=\left(U_{1} Z+U_{2}\right)\left(U_{3} Z+U_{4}\right)^{-1} \tag{2}
\end{equation*}
$$

carries $\mathfrak{A}_{(n, m)}$ into itself, where $U=\left(\begin{array}{ll}U_{1} & U_{2} \\ U_{3} & U_{4}\end{array}\right)$, and the types of U_{1}, U_{2}, U_{3}, U_{4} are respectively $(n, n),(n, m),(m, n),(m, m)$. Hence the matrices satisfying the condition (1) induce the displacements in the space $\mathfrak{A}_{(n, m)}$ and form a group $\Gamma_{(n, m)}$. The matrices inducing the identical displacement in $\mathfrak{A}_{(n, m)}$ are of the form $\omega E^{(n+m)}(|\omega|=1)$ and constitute a group $\Gamma_{(n, m)}^{*}$. The factor group $\Gamma_{(n, m)} \mid \Gamma_{(n, m)}^{*}$ is called the group $\mathfrak{B}_{(n, m)}$ of all displacements in $\mathfrak{A}_{(n, m)} . \mathfrak{B}_{(n, m)}$ is transitive in $\mathfrak{A}_{(n, m)}$: For a given point A we put

$$
U_{A}=\left(\begin{array}{cc}
N^{-1} & -N^{-1} A \\
-M^{-1} \bar{A}^{\prime} & M^{-1}
\end{array}\right), \quad E^{(n)}-A \bar{A}^{\prime}=N \bar{N}^{\prime}, \quad E^{(m)}-\bar{A}^{\prime} A=M \bar{M}^{\prime}
$$

Then U_{A} carries A into the zero point and $U_{A} \in \Gamma_{(n, m)}$.

[^0]The subgroups of $\mathfrak{B}_{(n, m)}$ without infinitesimal transformations are called general fuchsian groups. Since a matrix $U \in \Gamma_{(n, m)}$ fixing the zero point is of the form $\left(\begin{array}{cc}U_{1} & 0 \\ 0 & U_{4}\end{array}\right)$ with unitary matrices U_{1} and U_{4}, the group of all displacements which leave the zero point unchanged is compact. Hence we have

Theorem: Every fuchsian group is properly discontinuous in $\mathfrak{U}_{(n, m)}$.

Now let us consider a general fuchsian group (5), and put

$$
\begin{equation*}
\Theta_{k}(Z)=\sum_{\sigma \in \mathscr{G}}\left|U_{3} Z+U_{4}\right|^{-k(n+m)}, \quad(k \geqq 2) \tag{3}
\end{equation*}
$$

where $\sigma(Z)=\left(U_{1} Z+U_{2}\right)\left(U_{3} Z+U_{4}\right)^{-1}$, that is, a displacement σ is induced by $U=\left(\begin{array}{ll}U_{1} & U_{2} \\ U_{3} & U_{4}\end{array}\right) \in \Gamma_{(n, m)}$.

Theorem: The series $\theta_{k}(Z)$ thus defined is absolutely and uniformly convergent in the neighbourhood of any point in $\mathfrak{A}_{(n, m)}$.

For the proof of this theorem we have only to calculate the euclidean volume $v(\sigma \Re)$ of the set $\sigma \Re$, where $\sigma \in \mathscr{S}$ and Ω is the set of all points $Z=\left(z_{i k}\right)$ such that $\left|z_{i k}-z_{i k}^{0}\right|<r$ for a fixed point $Z_{0}=\left(z_{i k}^{0}\right)$. The volume is given by

$$
v(\sigma \Omega)=\int_{\Omega} I d Z^{*}, \quad d Z^{*}=\prod_{a=1}^{n} \prod_{\beta=1}^{m} d x_{a \beta} d y_{a \beta}, \quad z_{\alpha \beta}=x_{a \beta}+i y_{a \beta},
$$

where I means the absolute value of the Jacobian $\frac{\partial \sigma(Z)}{\partial Z}$ for the dis-
placement σ. But we have here $I=\left\|U_{3} Z+U_{4}\right\|^{-2(n+m)}$ and consequently $v(\sigma \mathfrak{R}) \geqq\left(\pi r^{2}\right)^{n m}\left\|U_{3} Z_{0}+U_{4}\right\|^{-2(n+m)}$

The second method of proof given in S. II is also applicable to our case. For this purpose we introduce a non-euclidean metric in the space $\mathfrak{A}_{(n, m)}$ by defining a line element as
$d s^{2}=S p\left[\left(E^{(m)}-\bar{Z}^{\prime} Z\right)^{-1}(\overline{d Z})^{\prime}\left(E^{(n)}-Z \bar{Z}^{\prime}\right)^{-1} d Z\right]$. Then the volume element $d v$ is given by $d v=\left|E^{(m)}-\bar{Z}^{\prime} Z\right|^{-(n+m)} d Z^{*}$. As for zetafuchsian functions we obtain an analogous theorem as in S. II.
§ 2. Lemmas on matrices.
Lemma 1: If A is a matrix of the type (n, m), then there exist two unitary matrices U (of order n) and V (of order m) such that

$$
U A V=\left(\begin{array}{lll}
\alpha_{1} \cdot & & 0 \\
& \ddots & \alpha_{r} \\
0 & & \ddots
\end{array}\right), \quad\left(\alpha_{i} \geqq 0\right)^{11}
$$

If A is in particular a symmetrical matrix, then Lemma 1 can be stated more precisely.

Lemma 2: If A is a symmetrical matrix of order n, then there

[^1]exists a unitary matrix U so that $U^{\prime} A U$ is a real (non negative) diagonal matrix.

Proof. First we will show that the equation

$$
\begin{equation*}
A_{\bar{z}}=\sqrt{\bar{z}} \tag{4}
\end{equation*}
$$

has, for a suitable real number λ, a solution vector z (of dimension n). For this purpose let us put $A=B+i C$ and $\mathfrak{z}=\mathfrak{x}+i \mathfrak{y}$, where B, C or \mathfrak{x}, \mathfrak{y} are respectively real symmetrical matrices or real vectors. Then the equation (4) can be written as follows:

$$
\left\{\begin{array}{l}
\left(\lambda E^{(n)}-B\right) \mathfrak{x}+C \mathfrak{y}=0 \tag{5}\\
C \mathfrak{x}+\left(\lambda E^{(n)}+B\right) \mathfrak{y}=0 .
\end{array}\right.
$$

Since $K=\left(\begin{array}{r}B \\ -C \\ -C\end{array}\right)$ is a real symmetrical matrix, the characteristic equation of K has only real roots. If we denote one of these roots by α_{1}, the equation (5), and consequently (4) has, for $\lambda=\alpha_{1}$, a non trivial solution z_{1} with the property $z_{1}^{\prime} \bar{o}_{1}=1$. For this vector the relation $z_{1}^{\prime} A_{z_{1}}=\alpha_{1}$ holds. If $z^{\prime}-\bar{\gamma}_{1}=0$ for another vector z^{2}, then $z^{\prime} A_{z_{1}}=z_{1}^{\prime} A_{\mathfrak{z}}=0$. Hence we can prove this lemma by proceeding analogously as in the case of hermitian matrices.

Remark. If we restrict our consideration to the points in $\mathfrak{A}_{(n, n)}$, which are represented by symmetrical matrices, we obtain the space studied by Prof. Sugawara. In this space it is seen from Lemma 2 that there exists a displacement which carries the given points A and B into 0 and a diagonal matrix. This is a theorem obtained by G. Fubini in his recent paper ${ }^{1}$.
§3. The distance in the space $\mathfrak{A}_{(n, m)}$. For any two points Z_{1} and Z_{2} in $\mathfrak{A}_{(n, m)}$ we define

$$
D\left(Z_{1}, Z_{2}\right)=E^{(m)}-\left(E^{(m)}-\bar{Z}_{1}^{\prime} Z_{2}\right)^{-1}\left(E^{(m)}-\bar{Z}_{1}^{\prime} Z_{1}\right)\left(E^{(m)}-\bar{Z}_{2}^{\prime} Z_{1}\right)^{-1}\left(E^{(m)}-\bar{Z}_{2}^{\prime} Z_{2}\right) .
$$

If $\sigma \in \mathfrak{B}_{(n, m)}$, then $D\left(Z_{1}, Z_{2}\right)$ and $D\left(\sigma\left(Z_{1}\right), \sigma\left(Z_{2}\right)\right)$ are equivalent. Therefore the characteristic roots of $D\left(Z_{1}, Z_{2}\right)$ are invariant under the displacements of $\mathfrak{B}_{(n, m)}$. We denote the non negative quadratic roots of these characteristic roots by $d_{1}, \ldots, d_{m}{ }^{2}$, and put
(a)

$$
\rho\left(Z_{1}, Z_{2}\right)=\frac{1}{2}\left[\left(\log \frac{1+d_{1}}{1-d_{1}}\right)^{2}+\cdots+\left(\log \frac{1+d_{m}}{1-d_{m}}\right)^{2}\right]^{\frac{1}{2}}
$$

$$
\begin{equation*}
\rho^{*}\left(Z_{1}, Z_{2}\right)=\frac{1}{2} \log \frac{1+d}{1-d}, \quad d=\operatorname{Max}_{1 \leq i \leq m} d_{i} \tag{b}
\end{equation*}
$$

Then ρ and ρ^{*} are both invariant metrics in $\mathfrak{A}_{(n, m)}$.
The case (a). It is shown that in the non-euclidean space $\mathfrak{U}_{(n, m)}$ with

[^2]$d s^{2}=S p\left[\left(E^{(m)}-\bar{Z}^{\prime} Z\right)^{-1}\left(\overline{d Z^{\prime}}\right)\left(E^{(n)}-Z \bar{Z}^{\prime}\right)^{-1} d Z\right](\text { Cf. } \S 1)^{1)}$ the geodesics are given by
\[

\sigma Z(t)=\left($$
\begin{array}{cc}
\frac{\lambda_{1}^{t}-\lambda_{1}^{-t}}{\lambda_{1}^{t}+\lambda_{1}^{-t}} \cdot & \ddots \\
0 & \ddots \\
0 & \frac{\lambda_{m}^{t}-\lambda_{m}^{-t}}{\lambda_{m}^{t}+\lambda_{m}^{-t}} \\
0 \cdots \cdots \cdots \cdots \cdots \cdot 0
\end{array}
$$\right) \quad(n \geqq m),
\]

where $\sigma \in \mathfrak{B}_{(n, m)}, \lambda_{i}>0, t$ is a real variable ${ }^{2)}$. The distance from Z_{1} to Z_{2} along the geodesic is just $\rho\left(Z_{1}, Z_{2}\right)$.

The case (b). We have only to examine the triangle relation

$$
\begin{equation*}
\rho^{*}(A, C)+\rho^{*}(C, B) \geqq \rho^{*}(A, B) . \tag{6}
\end{equation*}
$$

We shall prove (6) in the case $n=m$; if $n>m$ (or $n<m$), the space $\mathcal{A}_{(n, m)}$ can be isometrically embedded in $\mathfrak{A}_{(n, n)}$ (or $\mathfrak{A}_{(m, m)}$). By Lemma 1 in $\S 2$ we can assume without loss of generality that A is a diagonal matrix $\left(\begin{array}{c}\alpha_{1} \cdot \\ 0\end{array} \cdot \begin{array}{c}0 \\ a_{n}\end{array}\right)\left(1>a_{i} \geqq 0\right)$, and C is the null matrix. If we denote the norm of a matrix T by $n(T)$, then we have $\rho^{*}(A, 0)=\frac{1}{2} \log \frac{1+n(A)}{1-n(A)}$,

$$
\rho^{*}(B, 0)=\frac{1}{2} \log \frac{1+n(B)}{1-n(B)} \quad \text { and } \quad \rho^{*}(A, B)=\frac{1}{2} \log \frac{1+n(K)}{1-n(K)},
$$

where

$$
\begin{gathered}
K=N^{-1}(B-A)\left(E-\bar{A}^{\prime} B\right)^{-1} M, \quad E-A \bar{A}^{\prime}=N \bar{N}^{\prime}, \\
E-\bar{A}^{\prime} A=M \bar{M}^{\prime} .
\end{gathered}
$$

Hence the relation (6) is reduced to

$$
\begin{equation*}
\frac{1+n(A)}{1-n(A)} \cdot \frac{1+n(B)}{1-n(B)} \geqq \frac{1+n(K)}{1-n(K)} . \tag{7}
\end{equation*}
$$

But, for the proof of (7), it is sufficient to show

$$
\begin{equation*}
n(K) \leqq \frac{n(A)+n(B)}{1+n(A) \cdot n(B)} . \tag{8}
\end{equation*}
$$

From the form of A we know that N and M can be chosen as follows:

$$
N=M=\left(\begin{array}{c}
\sqrt{1-\alpha_{1}^{2}} \\
0
\end{array} \ddots \frac{0}{\sqrt{1-\alpha_{n}^{2}}}\right) .
$$

By definition we get

$$
n(K)=\text { l. u. .b. }\left\|M^{-1}(B-A)(E-A B)^{-1} M \mathfrak{x}\right\|=\text { l. u. . . . } \frac{\left\|M^{-1}(B-A) \mathfrak{x}\right\|}{\left\|M^{-1}(E-A B) \mathfrak{c}\right\|},
$$

where \mathfrak{x} is an n-dimensional vector and $\|z\|$ denotes the length of a

1) In the case $m=1$ (hyperfuchsian groups) it is easily seen that

$$
d s^{2}=\left[\left(1-\Sigma\left|z_{i}\right|^{2}\right)\left(\Sigma d z_{i} \overline{d z_{i}}\right)+\left|\Sigma z_{i} \overline{d z_{i}}\right|^{2}\right]\left(1-\Sigma\left|z_{i}\right|^{2}\right)^{-2}, \quad \Sigma=\sum_{i=1}^{n}, \quad Z=\left(\begin{array}{c}
z_{1} \\
\vdots \\
z_{n}
\end{array}\right) .
$$

2) G. Fubini, Proc. Nat. Acad. Sci. U.S. A. 26, 695-700.
vector 子. If $\|\mathfrak{x}\|=1$, then $\|B \mathfrak{x}\| \leqq n(B)$. Hence for the proof of (8) it suffices to show

$$
\begin{equation*}
\frac{\left\|M^{-1} \mathfrak{y}-M^{-1} A \mathfrak{x}\right\|}{\left\|M^{-1} \mathfrak{x}-M^{-1} A \mathfrak{y}\right\|} \leqq \frac{\alpha+\beta}{1+\alpha \beta}, \quad \text { for } \quad\|\mathfrak{x}\|=1, \quad\|\mathfrak{y}\|=\beta \tag{9}
\end{equation*}
$$

where $\alpha=n(A), \beta=n(B)$ and \mathfrak{y} is a vector.
Putting $\quad \varphi=\left\|M^{-1} \mathfrak{y}-M^{-1} A \mathfrak{c}\right\|, \quad \psi=\left\|M^{-1} \mathfrak{x}-M^{-1} A \mathfrak{y}\right\|$,

$$
\mathfrak{x}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right), \quad \mathfrak{y}=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right),
$$

we get

$$
\begin{aligned}
\varphi^{2} & =\sum_{i=1}^{n} \frac{\left|x_{i}\right|^{2}+\left|y_{i}\right|^{2}}{1-\alpha_{i}^{2}}-1-2 \Re\left(\sum_{i=1}^{n} \frac{\alpha_{i} x_{i} \bar{y}_{i}}{1-\alpha_{i}^{2}}\right) \\
\psi^{2} & =\sum_{i=1}^{n} \frac{\left|x_{i}\right|^{2}+\left|y_{i}\right|^{2}}{1-\alpha_{i}^{2}}-\beta^{2}-2 \Re\left(\sum_{i=1}^{n} \frac{\alpha_{i} x_{i} \bar{y}_{i}}{1-\alpha_{i}^{2}}\right) .
\end{aligned}
$$

Since $\quad \frac{\varphi^{2}+\varepsilon_{1}+\varepsilon_{2}}{\psi^{2}+\varepsilon_{1}+\varepsilon_{2}}=\left(\frac{\alpha+\beta}{1+\alpha \beta}\right)^{2}<1 \quad$ and $\quad \varepsilon_{1} \geqq 0^{1)}, \quad \varepsilon_{2} \geqq 0^{2)}, \quad$ where

$$
\varepsilon_{1}=\sum \frac{\left|x_{i}\right|^{2}+\left|y_{i}\right|^{2}}{1-\alpha^{2}}-\sum \frac{\left|x_{i}\right|^{2}+\left|y_{i}\right|^{2}}{1-\alpha_{i}^{2}}, \quad \varepsilon_{2}=\frac{2 \alpha \beta}{1-\alpha^{2}}+2 \Re\left(\sum \frac{\alpha_{i} x_{i} \bar{y}_{i}}{1-\alpha_{i}^{2}}\right),
$$

we have

$$
\frac{\varphi^{2}}{\psi^{2}} \leqq \frac{\varphi^{2}+\varepsilon_{1}+\varepsilon_{2}}{\psi^{2}+\varepsilon_{1}+\varepsilon_{2}}=\left(\frac{\alpha+\beta}{1+\alpha \beta}\right)^{2}
$$

and consequently inequality (6) is proved.
Remark. The above proof is valid for the space studied by Prof. Sugawara (Cf. S. III). For this case he has given a simple proof with an infinitesimal method.

1) Because $a=\operatorname{Max}\left(\alpha_{i}\right)$.
2) This follows from Cauchy-Schwarz's inequality.

[^0]: 1) M. Sugawara, Über eine allgemeine Theorie der Fuchsschen Gruppen und ThetaReihen, Ann. Math. 41, 488-494; M. Sugawara, On the general Zetafuchsian functions, Proc. 16 (1940), 367-372 ; M. Sugawara, A generalization of Poincaré-space, Proc. 16 (1940), 373-377. In the sequel these papers will be cited as S. I, S. II, S. III respectively.
 2) By $E^{(m)}$ we mean the unite matrix of order m. $H>0$ means that a hermitian matrix H is positive definite. The same notations as in S . I will be used in this note.
 3) If we define the distance between two points Z_{1} and Z_{2} as $\left.\left[\operatorname{Sp} \overline{\left(Z_{1}-Z_{2}\right.}\right)^{\prime}\left(Z_{1}-Z_{2}\right)\right]^{\frac{1}{2}}$ then $\mathfrak{U}_{(n, m)}$ is an open, bounded, convex set in a complete metric space $\mathfrak{R}_{(n, m)}$.
[^1]: 1) This is known. Cf. J. von Neumann, Trans. Amer. Math. Soc. 36, 445-492. Let us find eigenvectors of $\bar{A}^{\prime} A: \bar{A}^{\prime} A \mathfrak{x}_{i}=\lambda_{i} \mathfrak{c}_{i}$, $\overline{\mathfrak{c}}_{i}^{\prime} \mathfrak{c}_{j}=\delta_{i j}$. For positive $\lambda_{i}>0$ we put $\mathfrak{y}_{i}=\frac{1}{\sqrt{\lambda_{i}}} A x_{i}$, and then construct a complete orthonormal system $z_{1}, \ldots, 3_{n}$ which includes these \mathfrak{y}_{i}. Then we have $\bar{z}_{i}^{\prime} A_{\mathfrak{d}}=\sqrt{\lambda_{i}} \delta_{i j}$ or 0 . This proves Lemma 1.
[^2]: 1) G. Fubini, Proc. Nat. Acad. Sci. U. S. A. 26, 700-708.
 2) The characteristic roots of $D\left(Z_{1}, Z_{2}\right)$ are all non negative real numbers less than 1.
