102. On Vector Lattice with a Unit, II.

By Kôsaku Yosida and Masanori Fukamiya.

Mathematical Institute, Osaka Imperial University. (Comm. by T. Takagi, m.I.A., Dec. 12, 1941.)
§ 1. Introduction and the theorems. In a preceding note ${ }^{1)}$ one of the authors gave a representation of the vector lattice with a unit to obtain an algebraic proof of Kakutani-Krein's lattice-theoretic characterisation ${ }^{2)}$ of the space of continuous functions on a bicompact Hausdorff space. The purpose of the present note is to extend the result and to show that there exists a close analogy between the structures of the vector lattice and the algebras as in the case of the normed ring and the algebras ${ }^{3}$.

A vector lattice E is a partially ordered real linear space, some of whose elements f are " non-negative" (written $f \geqq 0$) and in which"
(V 1): If $f \geqq 0$ and $\alpha \geqq 0$, then $\alpha f \geqq 0$.
(V 2) : If $f \geqq 0$ and $-f \geqq 0$, then $f=0$.
(V 3) : If $f \geqq 0$ and $g \geqq 0$, then $f+g \geqq 0$.
(V 4): E is a lattice by the semi-order relation $f \geqq g(f-g \geq 0)$.
In this note we further assume the existence of a "unit" $I>0$ satisfying
(V5): For any $f \in E$ there exists $\alpha>0$ such that $-\alpha I \leqq f \leqq \alpha I$.
An element $f \in E$ is called " nilpotent" if $n|f|<I(n=1,2, \ldots)$. The set R of all the nilpotent elements f is called the " radical" of E. Surely R constitutes a linear subspace of E. Moreover it is easy to see that R is an "ideal" of E, viz. $f \in R$ and $|g| \leqq|f|$ imply $g \in R$. Here we put as usual $|f|=f^{+}-f^{-}, f^{+}=f \bigvee 0=\sup (f, 0), f^{-}=f \backslash 0=\inf (f, 0)$.

Let N be a linear subspace of E. Then the linear congruence $a \equiv b(\bmod . N)$ is also a lattice-congruence :

$$
a \equiv b, a^{\prime} \equiv b^{\prime} \quad(\bmod . N) \text { implies } a b \equiv a^{\prime} b^{\prime} \quad(\bmod . N),
$$

if and only if N is an ideal of $E^{5)}$. An ideal N is called " non-trivial" if $N \neq 0, E$. A non-trivial ideal N is called " maximal" if it is contained in no other ideal $\neq E$. Denote by \mathfrak{R} the set of all the maximal ideals N of E. The residual class E / N of E mod. any ideal $N \in \mathfrak{R}$ is "simple", viz. E / N does not contain non-trivial ideals. It is proved

[^0]5) Garrett Birkhoff : Lattice Theory, New York (1940), 109.
below that simple vector lattice with a unit is linear-lattice-isomorphic to the vector lattice of real numbers, the non-negative elements and the unit being represented by non-negative numbers and the number 1. We denote by $f(N)$ the real number which corresponds to $f \in E$ by the linear-lattice-homomorphism $E \rightarrow E / N, N \in \mathfrak{R}$.

After these preliminaries we may state our
Theorem 1. The radical R coincides with the intersection ideal $\bigwedge_{N \in \Re} N$.

The vector lattice $\bar{E}=E / R$ is again a vector lattice with a unit \bar{I}. By the theorem 1 the intersection ideal $\bigwedge_{\bar{N} \in \bar{M}} \bar{N}$ of all the maximal ideals \bar{N} of E is the zero ideal and hence \bar{E} does not contain nilpotent element $\neq 0$. Thus \bar{E} satisfies the "Archimedean axiom":
(V 6) : order-limit $\frac{1}{n}|\bar{f}|=0$ for all $\bar{f} \in \bar{E}$.
Therefore, by the result of the preceding note, we may add a precision to the theorem 1:

Theorem 2. By the correspondence $\bar{f} \rightarrow \bar{f}(\bar{N}), \bar{E}$ is linear-latticeisomorphically mapped on the vector lattice $F(\overline{\mathfrak{P}})$ of real-valued bounded functions on \bar{N} such that i) $\bar{f} \rightarrow \bar{f}(\bar{N})$, ii) $\bar{I}(\bar{N}) \pm 1$ on $\bar{\Re}$ and iii) $F(\bar{\Re})$ is dense in the set of all the real-valued continuous functions $c(\bar{N})$ on $\overline{\mathfrak{N}}$ by the "norm" $\|c\|=\sup _{\bar{N}}|c(\bar{N})|$. Here the topology in $\overline{\mathfrak{M}}$ is defined by calling open the set of all the points $\bar{N} \in \overline{\mathfrak{M}}$ which satisfy $\mid \bar{f}_{i}(\bar{N})-$ $\bar{f}_{i}\left(\bar{N}_{0}\right) \mid<\varepsilon_{i}, i=1,2, \ldots, n$, where $\bar{N}_{0}, \bar{N} \in \bar{\Re}, \varepsilon_{i}>0$, n and $\bar{f}_{i}\left(-\bar{I} \leqq \bar{f}_{i} \leqq \bar{I}\right)$ are arbitrary.

The theorems 1 and 2 show the analogy to a fundamental theorem in the theory of algebras, viz. the theorem stating that the residual class of an algebra mod. its maximal nilpotent ideal is a direct sum of total matric algebras.
§2. The proof of the theorem 1 may be obtained by the following four lemmas.

Lemma 1. Let E be a simple vector lattice with a unit I, then we must have $E=\{\alpha I\},-\infty<\alpha<\infty$.

Proof. E does not contain a nilpotent element $f=0$, for otherwise E would contain the non-trivial ideal $N_{0}=\mathscr{E}(|g| \leqq \eta|f|, \eta<\infty)$. Hence E satisfies the Archimedean axiom (V6). Let $E \ni f \neq \gamma I$ for any γ. Let $\alpha=\inf \alpha^{\prime}, \alpha^{\prime} I \geqq f, \beta=\sup \beta^{\prime}, \beta^{\prime} I \leqq f$, then $\beta I \leqq f \leqq \alpha I$ and $\alpha>\beta$. Hence $(f-\delta I)^{+} \neq 0, \quad(f-\delta I)^{-} \neq 0$ for $\beta<\delta<\alpha$. Then the set $N_{0}=$ $\underset{g}{\mathscr{C}}\left(|g| \leqq \eta(f-\delta I)^{+}, \quad \eta<\infty\right)$ is a non-trivial ideal, contrary to the $\stackrel{g}{\text { hypothesis. }}$

Lemma 2. For any non-trivial ideal N_{0} there exists a maximal ideal $N>N_{0}$.

Proof. Let $N_{0} \subset N_{1} \subset N_{2} \subset \cdots \subset N_{\eta} \subset \cdots, \eta<\omega$, be a transfinite sequence of non-trivial ideals. If ω is a limit ordinal, define $f \equiv g$
$\left(\bmod . N_{\omega}\right)$ to mean $f \equiv g\left(\bmod . N_{\eta}\right)$ for some $\eta<\omega$. That N_{ω} is a nontrivial ideal follows from the fact that $I \neq 0\left(\bmod . N_{\eta}\right), \eta<\omega$. This process defines a transfinite sequence of linear-lattice-congruence relations on E, each more inclusive than the last. Hence it cannot continue indefinitely. Therefore we would obtain the demanded maximal ideal $N>N_{0}$.

Lemma 3. We have $R \leqq \wedge_{N \in \mathcal{R}} N$.
Proof. Let $f>0$ and $n f<I(n=1,2 \ldots)$, then for any $N \in \mathfrak{R}$ we have $n \cdot f(N) \leqq I(N)=1 \quad(n=1,2, \ldots)$ and hence $f(N)=0$, that is, $f \in N$.

Lemma 4. We have $R \geqq \bigwedge_{N \in \mathscr{R}} N$.
Proof. Let $f>0$ be not nilpotent, then we have to show that there exists an ideal $N \in \mathfrak{R}$ such that $f \bar{\in} N$. This may be proved as follows.

Let $n \cdot f \nsubseteq I$. Such an integer $n \geqq 1$ surely exists, since f is not nilpotent. We may assume that $n \cdot f \nsupseteq I$, since otherwise $f \bar{\epsilon} N$ for any $N \in \mathfrak{R}$. Thus $p=I-(n \cdot f) \wedge I>0$. For any positive integer m we do not have $m \cdot p \geqq I$. If otherwise we would have $\frac{1}{m} I \leqq I-(n \cdot f) \wedge I$ and hence

$$
\begin{equation*}
n \cdot f \wedge I=n \cdot f \wedge\left(1-\frac{1}{m}\right) I \tag{1}
\end{equation*}
$$

which implies

$$
\begin{equation*}
n \cdot f \leqq\left(1-\frac{1}{m}\right) I \tag{2}
\end{equation*}
$$

contrary to $n \cdot f 末 I$. Thus the set $N_{0}=\mathscr{E}(|g| \leqq \eta p, \eta<\infty)$ is a nontrivial ideal and hence there exists a maximal ideal $N \ni N_{0}$, by the lemma 2. Then $O=p(N)=1-(n \cdot f(N)) \wedge 1$, and thus $f(N)>0$, that is, $f \bar{\epsilon} N$.

The deduction of (2) from (1). From (1) we have

$$
\left(n \cdot f-\left(1-\frac{1}{m}\right) I\right) \wedge \frac{1}{m} I=\left(n \cdot f-\left(1-\frac{1}{m}\right) I\right) \wedge 0 \leqq 0
$$

and hence, by the distributivity of the vector lattice,

$$
0=\left\{\left(n \cdot f-\left(1-\frac{1}{m}\right) I\right) \wedge \frac{1}{m} I\right\} \vee 0=\left(n \cdot f-\left(1-\frac{1}{m}\right) I\right)^{+} \wedge_{m}^{1} I
$$

Thus $\left(n \cdot f-\left(1-\frac{1}{m}\right) I\right)^{+} \bigwedge I=0$. Put $b=\left(n \cdot f-\left(1-\frac{1}{m}\right) I\right)^{+}$and assume that $b>0$. By (V5) we have $b<\alpha I$ with $\alpha>1$. Then $0<b=b \wedge \alpha I$, and hence $0<\frac{b}{\alpha} \wedge I \leqq b \wedge I$, contrary to $b \wedge I=0$. Thus $b=0$, which is equivalent to (2).
§3. An example due to T. Nakayama. The following example shows that the existence of the unit is important for the theorem 1. Consider linear functions $\alpha x+\beta$ with an indeterminate symbol x. We put $\alpha x+\beta \geqq \gamma x+\delta$ if, and only if, 1) $\alpha>\delta$ or 2) $\alpha=\gamma$ and $\beta \geqq \delta$. Then
the totality of the vectors $f=\left(\alpha_{1} x+\beta_{1}, \alpha_{2} x+\beta_{2}, \ldots\right)$ forms a vector lattice by componentwise addition and componentwise order relation. Now, consider the sublattice E consisting of those f such that almost all α_{i} are zero. This vector lattice possesses no unit. Further, if we call an element g nilpotent when $n|g|<f(n=1,2, \ldots)$ for a certain $f>0$, then g is nilpotent in E if and only if all its α_{i} vanish and almost all its β_{i} vanish. On the other hand, the intersection of all the maximal ideals in E contains the totality of those f such that all its α_{i} are zero. This last property may be proved by the fact that a simple vector lattice is linear-lattice-isomorphic to real numbers (proof similar as in the lemma 1). In fact, let $c=\left(\gamma_{1}, \gamma_{2}, \ldots\right)$ with all $\gamma_{i} \geqq 0$ be $\bar{\epsilon}$ a maximal ideal N, then, since E / N is isomorphic to real numbers, we have $(2 x, 0,0, \ldots) \equiv \delta c(\bmod . N)$. Hence $(x, 0,0 \ldots) \in N$ and similarly $(0, x, 0,0, \ldots),(0,0, x, 0,0, \ldots), \ldots \in N$. Thus if only a finite number of $\alpha_{i} x+\beta_{i} \neq 0$, then $\left(\alpha_{1} x+\beta_{1}, \alpha_{2} x+\beta_{2}, \ldots\right) \in N$. Let M denote the totality of such elements. $\quad N / M$ is a maximal ideal of E / M. Since $n r_{i}<i \gamma_{i}$ for almost all i, we have $n c<c_{1}=\left(\gamma_{1}, 2 \gamma_{2}, 3 \gamma_{3}, \ldots\right)(\bmod . M)$. Thus c (mod. M) is contained in any maximal ideal of E / M and hence c $(\bmod . M) \in N / M$. Therefore $c \in N$, contrary to the assumption.

[^0]: 1) K. Yosida: Proc. 17 (1941), 121-124. Cf. also M. H. Stone: Proc. Nat. Acad. Sci. 27 (1941), 83-87, and H. Nakano: Proc. 17 (1941), 311-317.
 2) S. Kakatani : Proc. 16 (1940), 63-67. M. and S. Krein : C. R. URSS, 27 (1940), 427-430.
 3) I. Gelfand: Rec. Math. 9 (1941), 1-24. We here express our hearty thanks to Tadasi Nakayama for his discussions during the preparation of the present note. He also obtained another proof of the theorem 1 below by considering the embedding of "lattice-groups" in a direct product of linearly ordered lattice-groups. See his paper shortly to appear in these Proceedings.
 4) Small roman letters and small greek letters respectively denote elements $\in E$ and real numbers. We write $f>0$ if $f \geqq 0$ and $f \neq 0$.
