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102. On Vector Lattice with a Unit, II.

By KSsaku Y0SIDA and Masanori FUKAMIYA.
Mathematical Institute, Osaka Imperial University.

(Comm. by T. TAKAGI, M.I.A., Dec. 12, 1941.)

1. Introduction and the theorems. In a preceding note) one of
the authors gave a representation of the vector lattice with a unit to
obtain an algebraic proof of Kakutani-Krein’s lattice-theoretic char-
acterisatione) of the space of continuous functions on a bicompact
Hausdorff space. The purpose of the present note is to extend the
result and to show that there exists a close analogy between the
structures of the vector lattice and the algebras as in the case of the
normed ring and the algebras).

A vector lattice E is a partially ordered real linear space, some
of whose elements f are "non-negative" (written f 0) and in which)

(V 1)" If f 0 and a 0, then af

_
O.

(V2)" Iff0 and -f0, then f--0.
(V3)" Iff0 and g0, then f+g0.
(V 4)" E is a lattice by the semi-order relation f g (f-g

__
0).

In this note we further assume the existence of a "unit" I:> 0
satisfying

(V 5)" For any fe E there exists a 2> 0 such that aI.f aI.
An element fe E is called "nilpotent" if n fl I(n= 1, 2,...).

The set R of all the nilpotent elements f is called the "radical" of E.
Surely R constitutes a linear subspace of E. Moreover it is easy to see
that R is an "ideal" of E, viz. fe R and g]lfl imply g e R. Here
we put as usual fl=f+ f-, f+ f/0 sup(3; 0), f- f/k 0 inf(f, 0).

Let N be a linear subspace of E. Then the linear congruence
ab (rood. N) is also a lattice-congruence"

a--b, a’b’ (mod. N) implies ab--a’b’ (rood. N),

if and only if N is an ideal of E. An ideal N is called "non-trivial"
if N 0, E. A non-trivial ideal N is called "maximal" if it is con-
tained in no other ideal 4 E. Denote by 9 the set of all the maximal
ideals N of E. The residual class E/N of E mod. any ideal Ne is
"simple ", viz. E/N does not contain non-trivial ideals. It is proved
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He also obtained another proof of the theorem 1 below by considering the embedding
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below that simple vector lattice with a unit is linear-lattice-isomorphic
to the vector lattice of real numbers, the non-negative elements and
the unit being represented by non-negative numbers and the number
1. We denote by f(N) the real number which corresponds to f e E by
the linear-lattice-homomorphism E-- E/N, Ne .

After these preliminaries we may state our
Theorem 1. The radical R coincides with the intersection ideal

/ N.
Ne

The vector lattice E=E/R is again a vector lattice with a unit
/=. By the theorem 1 the intersection ideal / 2 of all the maximal

Neg

ideals N of E is the zero ideal and hence E does not contain nilpotent
element 0. Thus E satisfies the "Archimedean axiom ""

(V 6)" order-limit 1--If 0 for all fe E.
Therefore, by the result of the preceding note, we may add a precision
to the theorem 1"

Theorem . By the correspondence f-,f-(), is linear-lattice-
isomorphically mapped on the vector lattice F() of real-valued bounded

.(unctions on N such that i)f--,f(N), ii) I(N)=kl on and iii) F()
is dense in the set of all the real-valued continuous functions c(N) on

by the "norm" c II=sup c(N) I. Here the topology in is defined by
N

calling open the set of all the points Ne which satisfy f(N)-
(7o) < , i-- 1, 2,..., n, where o, e , > O, n and ( i )
are arbitrary.

The theorems 1 and 2 show the analogy to a fundamental theorem
in the theory of algebras, viz. the theorem stating that the residual
class of an algebra mod. its maximal nilpotent ideal is a direct sum of
total matric algebras.

2. The proof of the theorem 1 may be obtained by the follow-
ing four lemmas.

Lemma 1. Let E be a simple vector lattice with a unit /, then
we must have E= (aI}, <2 <: .

Proof. E does not contain a nilpotent element f=O, for otherwise
E would contain the non-trivial ideal No (I g y lf I, ). Hence

g

E satisfies the Archimedean axiom (V 6). Let Ef 7"I for any y.
Let a inf a’, a’I ::> f, / sup fl’, fl’I f, then flI f o.I and a :>/.
Hence (f-3/)+ 4= 0, (f-3I)- 0 for fl <2 3 <2 a. Then the set N0=
(( g - (f-3I)+, ) is a non-trivial ideal, contrary to the
g

hypothesis.
Lemma 2. For any non-trivial ideal No there exists a maximal

ideal N No.
Proof. Let N0 N N. N --., y <2 o, be a transfinite

sequence of non-trivial ideals. If ,o is a limit ordinal, define f:=g
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(mod. N) to mean f_=--g (mod. N)for some y <:: o. That No is a non-
trivial ideal follows from the fact that I0 (mod. N), y <: o. This
process defines a transfinite sequence of linear-lattice-congruence rela-
tions on E, each more inclusive than the last. Hence it cannot con-
tinue indefinitely. Therefore we would obtain the demanded maximal
ideal N No.

Lemma 3. We have R /N.

Proof. Let f::> 0 and nf <7. I (n= 1, 2 ), then for any Ne 9 we
have n .f(N) I(N)--1 (n= 1, 2, ...) and hence f(N)= O, that is, f e N.

Lemma 4. We have R /N.
Neg

Proof. Let f:>0 be not nilpotent, then we have to show that
there exists an ideal Ne such that f N. Tiis may be proved as
follows.

Let n .fI. Such an integer n 1 surely exists, since f is not
nilpotent. We may assume that n "f:L since otherwise fN for any
Ne . Thus p=I-(n.f)/I:> O. For any positive integer m we do

If otherwise we would have --1-I I-(n.f)/I
m

not have m.p I.

and hence

(1)

which implies

(2)

contrary to n-f/.

n.f AI=n f A(1--)I,m

Thus the set No= $( g rip, r] <:: ) is a non-
g

trivial ideal and hence there exists a maximal ideal NNo, by the

lemma 2. Then O=p(N)= 1- (n .f(N))/ 1, and thus f(N)O, that
is, fN.

The deduction of (2)from (1). From (1) we have

1 I(1-
and hence, by the distributivity of the vector lattice,

0 [(n f-(1 1 )I)A1 I}V0 (n f-(1 1)I)+ 1

Thus (’f-(1--)) AI=0. Putb f -)I) andassume

that b > 0. By (V ) we have b < aI with a > 1. hen 0 < b b A aL
and hence 0 < b_ A I bA I, contrary to b AI= 0. hus b 0, which

is equivalent to (2).. A eampe ge o T. Naaama. he following example
shows that the existenee of the unit is important for the theorem. 1.
Consider linear functions a+ with an indeterminate symbol z. We
ut a+r+8 if, and onlyif, 1) a>or2) a=r and 8. hen
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the totality of the vectors f=(ax+, ax+, ...)forms a vector lattice
by componentwise addition and componentwise order relation. Now,
consider the sublattice E consisting of those f such that almost all a
are zero. This vector lattice possesses no unit. Further, if we call
an element g nilpotent when n lgl f (n--1, 2, ...) for a certain f:> 0,
then g is nilpotent in E if and only if all its a vanish and almost all
its / vanish. On the other hand, the intersection of all the maximal
ideals in E contains the totality of those f such that all its a are
zero. This last property may be proved by the fact that a simple
vector lattice is linear-lattice-isomorphic to real numbers (proof similar
as in the lemma 1). In fact, let c=(’, 7"., ...) with all 0 be g a
maximal ideal N, then, since E/N is isomorphic to real numbers, we
have (2x, 0, 0, ...)c (mod. N). Hence (x, 0, 0 ...)e N and similarly
(0, x, 0, 0,...), (0, 0, x, 0, 0, ...), e N. Thus if only a finite number of
a.x+ fl 0, then (ax+ 1, a.x+, ...) e N. Let M denote the totality
of such elements. N/M is a maximal ideal of ElM. Since n i
for almost all i, we have nc <: c (, 2, 3, ...) (mod. M). Thus c
(rood. M) is contained in any maximal ideal of E/M and hence c
(rood. M) e N/M. Therefore c e N, contrary to the assumption.


