83. On a Theorem of F. L. Spitzer and C. J. Stone

By Takesi Watanabe
Department of Applied Science, Kyushu University, Fukuoka, Japan (Comm. by Z. Suetuna, m.J.A., July 12, 1961)

1. Introduction. In their recent work [6], Spitzer and Stone have proved the following interesting theorem which was the basis of their discussion. Consider a sequence $\left\{c_{k} ; k=0, \pm 1, \pm 2, \cdots\right\}$ satisfying the conditions:

$$
\begin{equation*}
c_{k} \geqq 0, \quad \sum_{k=-\infty}^{\infty} c_{k}=1, \tag{c.1}
\end{equation*}
$$

$$
\begin{gather*}
0<\sum_{k=-\infty}^{\infty} k^{2} c_{k}=v<+\infty \tag{c.2}\\
c_{k}=c_{-k}, \tag{c.3}\\
\text { g.c.d. }\left\{k ; k>0, c_{k}>0\right\}=1 . \tag{c.4}
\end{gather*}
$$

Putting $\varphi(\theta)=\sum_{k=-\infty}^{\infty} c_{e} e^{i k \theta}$ and noting $2 \geqq 1-\varphi(\theta) \geqq 0$, it follows that there exists a unique sequence of polynomials $\left\{p_{n}(z)=\sum_{k=0}^{n} p_{n k} z^{k} ; p_{n n}>0, n=0\right.$, $1,2, \cdots\}$ satisfying

$$
\frac{1}{2 \pi} \int_{-x}^{\pi} p_{n}\left(e^{i \theta}\right) \overline{p_{m}\left(e^{i \theta}\right)}[1-\varphi(\theta)] d \theta=\delta_{n m}
$$

for $n, m=0,1,2, \cdots$.
Theorem (Spitzer and Stone). The relation

$$
p_{n k}-(2 / v)^{\frac{1}{2}}(k / n) \rightarrow 0 \quad(n-k \rightarrow \infty)
$$

holds uniformly in k and n.
In this note we shall derive a more probabilistic version of the above theorem under a weaker condition (c.3) $\sum_{k=-\infty}^{\infty} k c_{k}=0$ instead of (c.3). The main feature of our discussion is in full use of the general theory of Markov chains. By doing so we can prove Theorem 2.1 in [6] under (c.3)' and substitute some simple probabilistic arguments for the rather complicated calculations in [6] (e.g. Lemmas 5-11).
2. Markov chains. We now summarize some fundamental facts on Markov chains (with discrete parameter). As to the details, we refer the reader to Chap. I of [7].

Let S be a finite or denumerable space and $T=(T(x, y) ; x, y \in S)$, a substochastic matrix ${ }^{1}$ on S. Adding a new point e (called 'extra' point) to S, we extend T to $\tilde{S}=S \cup\{e\}$ as follows: $T(x, e)=1-\sum_{y \in S} T(x, y)$, $T(e, e)=1$ and $T(e, y)=0$ for $y \in S$. For any x in \widetilde{S}, the new transition

1) $\sum_{y \in S} T(x, y) \leqq 1$ for every $x \in S$.
matrix $T=(T(x, y) ; x, y \in \widetilde{S})$ determines the Markov chain $\left(x_{t}^{(x)}(w), t \in D\right.$ $=\{0,1,2, \cdots,+\infty\}$) whose initial distribution is the unit distribution at x, while $x_{+\infty}^{(x)}(w)=e$ with probability 1 . With no loss of generality we can take the basic probability field (W, \mathscr{B}, P_{x}) in the following way. W is the set of all paths (\widetilde{S}-valued function of t) satisfying the conditions that $w_{+\infty}=e$ and that if $w_{t}=e$, then $w_{s}=e$ for every $s \geqq t$, where w_{t} means the value at t of the path $w . \mathscr{B}$ is the ordinary Borel field generated by all cylinder sets in $W . P_{x}(\cdot)$ coincides with the joint distribution of $x_{t}^{(x)}(w)$. The system $\left(W, \mathscr{B}, P_{x}, x \in \widetilde{S}\right)$ with the above choice for all x is called the Markov chain over S associated with T and is denoted simply by x_{t}. For any fixed $w \in W$ and $s \in D$, the stopped path w_{s}^{-}and shifted one w_{s}^{+}are defined by $\left[w_{s}^{-}\right]_{t}=w_{\min (t, s)}$ $(t \neq+\infty),=e(t=+\infty)$ and $\left[w_{s}^{+}\right]_{t}=w_{s+t}$, respectively. We define several quantities and properties concerning the Markov chain. Let A or E denote a subset of S. The hitting time to $A, \sigma_{A}(w)=\min \left\{t ; w_{t}\right.$ $\in A\} ;{ }^{2)}$ the hitting probability from x to $E, p(x, E)=P_{x}\left(\sigma_{E}<+\infty\right)$; the Green measure $G(x, E)=\sum_{t=0}^{\infty} P_{x}\left(w_{t} \in E\right)$ and the harmonic measure to $A, H_{A}(x, E)=P_{x}\left(w_{\sigma_{A}} \in E\right)$. The point x in S is called recurrent ${ }^{3)}$ if $P_{x}\left(\sigma_{x}\left(w_{1}^{+}\right)<+\infty\right)=1$ and transient if it is not recurrent. Since the notions of Markov times and the strong Markov property are well known, we omit their precise description.

Let A be any subset of S. Then the restriction x_{t}^{A} of x_{t} to A is defined as the Markov chain over $A,\left(W^{A}, \mathcal{B}^{A}, P_{x}^{A}, x \in A^{\smile}\{e\}\right)$, associated with $T(A)=(T(x, y) ; x, y \in A)$. The new measure $P_{x}^{A}(\cdot)$ corresponds to the original one $P_{x}(\cdot)$ in the following simple manner. Considering the transformation $x^{A}(w)$ from W to W^{A} defined by $x_{t}^{A}(w)=w_{t}\left(t<\sigma_{A} \epsilon\right)$ and $=e\left(t \geqq \sigma_{\Lambda^{c}}\right)$, we have $P_{x}^{\Lambda}(\Lambda)=P_{x}\left(w ; x^{A}(w) \in \Lambda\right)$ for every $\Lambda \in \mathscr{B}^{A}$. The hitting probability and Green measure of x_{t}^{A} are denoted by $p^{4}(x, E)$ and $G^{A}(x, E)$ respectively.

The following results to be used later are well known (see [7]) except the last two assertions.
1° If x is recurrent and $p(x, y)>0, y$ is also recurrent and $p(x$, $y)=p(y, x)=1$.
2° If y is transient, $G(x, y)=p(x, y) G(y, y)<+\infty$ for any x.
3° If $A \supset B, H_{B}(x, E)=\sum_{y \in A} H_{A}(x, y) H_{B}(y, E)$ for any x and E.
4° If $A \frown B=\phi$ and $B \supset E$,

$$
\begin{equation*}
H_{A \cup B}(x, E)=H_{B}(x, E)-\sum_{y \in A} H_{A \cup B}(x, y) H_{B}(y, E) \text { for all } x . \tag{2.1}
\end{equation*}
$$

Noting that $B \supset E$ and using the strong Markov property to
2) If $\left\}\right.$ is void, $\sigma_{A}(w)=+\infty$ conventionally.
3) In appearance this definition of recurrence is a little different to that of [7]. But in our discrete parameter case, both definitions are equivalent to each other.
σ_{A+B}, the proof is straightforward.
5° For any $A \subset S, x \in A$ and any function u over $A^{c}=S-A$,

$$
\begin{equation*}
\sum_{y \in A^{c}} u(y) H_{A^{c}}(x, y)=\sum_{y \in A^{c}} \sum_{z \in A} G^{A}(x, z) T(z, y) u(y) \tag{2.2}
\end{equation*}
$$

which must be interpreted in the sense that the existence of the one side of (2.2) implies that of the other and the equality holds. Especially if u is a function over S and $v(z)=\sum_{y \in S} T(z, y)|u(y)|$ is integrable with respect to the measure $G^{4}(x, \cdot)$, the right side of (2.2) can be rewritten in the form

$$
\begin{equation*}
\sum_{z \in A} G^{A}(x, z)\left[\sum_{y \in S} T(z, y) u(y)-u(z)\right]+u(x) . \tag{2.3}
\end{equation*}
$$

Proof. Putting $\sigma(w)=\sigma_{A^{c}}(w)$ and extending u to $A+\{e\}$ by $u(e)$ $=0$, we have
the left side of $(2.2)=E_{x}\left(u\left(w_{\sigma}\right)\right)=\sum_{t=0}^{\infty} E_{x}\left(u\left(w_{t}\right) ; \sigma=t\right),{ }^{4}$

$$
\begin{aligned}
E_{x}\left(u\left(w_{0}\right) ; \sigma=0\right) & =0 \quad(\text { from } x \in A), \\
E_{x}\left(u\left(w_{t}\right) ; \sigma=t\right) & =E_{x}\left(u\left(\left(w_{t-1}^{+}\right)_{1}\right) ; \sigma\left(w_{t-1}^{+}\right)=1, \sigma(w)>t-1\right) \\
& =E_{x}\left(E_{w_{t-1}}\left(u\left(w_{1}\right) ; \sigma(w)=1\right) ; \sigma(w)>t-1\right)
\end{aligned}
$$

and therefore

$$
E_{x}\left(u\left(w_{\sigma}\right)\right)=E_{x}\left(\sum_{t=0}^{\infty} E_{w_{t}}\left(u\left(w_{1}\right) ; \sigma=1\right) ; \sigma>t\right)
$$

which verifies (2.2). The latter half is a direct consequence of the formula $\sum_{z \in A} G^{A}(x, z) T(z, y)=G^{A}(x, y)-\delta(x, y)^{5)}$ for every $y \in A$.
3. Main results. Let S be the set of all integers and $\left\{c_{k}\right\}$, the sequence over S satisfying the conditions (c.1), (c.2), (c.3)' $\sum_{k=-\infty}^{\infty} k c_{k}=0$ and (c.4) ${ }^{\prime}$ g.c.d. $\left\{|k| ; c_{k}>0\right\}=1$. It is evident that (c.3)' is much weaker than (c.3) and that (c.4) coincides with (c.4) if (c.3) is satisfied. We consider the Markov chain x_{t} corresponding to $T(k, j)=c_{j-k}, k, j \in S$. For such Markov chain, it is well known that $w_{t+1}-w_{t}, t=0,1,2, \ldots$ are independent random variables having the same distribution $\left\{c_{k}\right\}$ relative to $P_{k}(\cdot)$ for any k and that, defining the shift transformation θ_{j} on W by $\left(\theta_{j} w\right)_{t}=w_{t}+j$, we have $P_{k}(\Lambda)=P_{k+j}\left(\theta_{j} \Lambda\right)$ for any Λ of \mathscr{B}. In this connection our chain x_{t} may be called an additive Markov chain. The open interval (k, j) of S means the set $\{l ; l \in S, k<l<j\}$. The closed (or half open) interval of S should be understood in the same manner. Adopting this convention and the notations introduced §2, our theorem is stated as follows:

Theorem. Let x_{t} be the additive Markov chain defined just above. Then $\mu=\sum_{j \leq 1} j H_{[1, \infty)}(0, j)$ converges and the relation

$$
\begin{equation*}
p^{[0, n]}(k, n)-\mu^{-1}(k / n) \rightarrow 0 \quad(n-k \rightarrow \infty) \tag{3.1}
\end{equation*}
$$

4) In general, $E_{x}(f(w)$;) means the integral of $f(w)$ over the set $\Lambda \in \mathscr{B}$ relative to the measure $P_{x}(\cdot)$. If $P_{x}()=1$, we shall omit 1 in the expectation.
5) $\delta(x, y)=1(x=y),=0(x \neq y)$.
holds uniformly in k and n.
Before proving we prepare two lemmas, in which we have no need of the aperiodicity condition (c.4)'.

Lemma 1. $\quad G^{[0, \infty)}(j, j)=O(j)$.
Proof. Consider the sequence of Markov times: $\tau_{0}(w)=0, \tau_{1}(w)$ $=j^{2}+1+\sigma_{j}\left(w_{j^{2}+1}^{+}\right), \cdots, \tau_{n}(w)=\tau_{n-1}(w)+\tau_{1}\left(w_{\tau_{n-1}}^{+}\right), \cdots$. Putting $\sigma(w)$ $=\sigma_{(-\infty, 0)}(w)$, we have

$$
\begin{aligned}
G^{[0, \infty)}(j, j) & =E_{j}\left(\sum_{t \geq 0} \chi_{j}\left(w_{t}\right) ; t<\sigma\right)^{6)}=\sum_{n \geq 0} E_{j}\left(\sum_{t=\tau_{n}}^{\tau_{n+1}-1} \chi_{j}\left(w_{t}\right) ; t<\sigma\right) \\
& \leqq \sum_{n \geq 0} E_{j}\left(\sum_{t=\tau_{n}}^{\tau_{n+1}-1} \chi_{j}\left(w_{t}\right) ; \tau_{n}<\sigma\right) .
\end{aligned}
$$

Applying the strong Markov property to τ_{n} and noting that $w_{\tau_{n}}=j$, it follows that

$$
\begin{aligned}
E_{j}\left(\sum_{t=\tau_{n}}^{\tau_{n+1}-1} \chi_{j}\left(w_{t}\right) ; \tau_{n}<\sigma\right) & =E_{j}\left[E_{w_{\tau_{n}}}\left(\sum_{t=0}^{\tau_{1}-1} \chi_{j}\left(w_{t}\right)\right) ; \tau_{n}<\sigma\right] \\
& =E_{j}\left(\sum_{t=0}^{j^{2}} \chi_{j}\left(w_{t}\right)\right) P_{j}\left(\tau_{n}<\sigma\right), \\
P_{j}\left(\tau_{n}<\sigma\right) & =E_{j}\left[P_{w_{\tau_{n-1}}}\left(\tau_{1}<\sigma\right) ; \tau_{n-1}<\sigma\right] \\
& =P_{j}\left(\tau_{1}<\sigma\right) P_{j}\left(\tau_{n-1}<\sigma\right)=\left[P_{j}\left(\tau_{1}<\sigma\right)\right]^{n} .
\end{aligned}
$$

But from the central limit theorem we get

$$
\begin{aligned}
P_{j}\left(\tau_{1}<\sigma\right) & \leqq P_{j}\left(j^{2}<\sigma\right) \leqq P_{j}\left(w_{j^{2}} \geqq 0\right)=P_{0}\left(w_{j^{2}} \geqq-j\right) \\
& =P_{0}\left(\frac{w_{j 2}}{j \sqrt{v}} \geqq-\frac{1}{\sqrt{v}}\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\frac{1}{\sqrt{v}}}^{\infty} e^{-\frac{x^{2}}{2}} d x+o(1)<\alpha<1,
\end{aligned}
$$

where α is a constant independent of j. Moreover the local limit theorem ([4], p. 233) shows that we can choose some constant β such that

$$
P_{j}\left(w_{t}=j\right)=P_{0}\left(w_{t}=0\right) \leqq \beta(t+1)^{-\frac{1}{2}} \quad \text { for every } t \in D
$$

whence $\quad E_{j}\left(\sum_{t=0}^{j^{2}} \chi_{j}\left(w_{t}\right)\right)=\sum_{t=0}^{j^{2}} P_{j}\left(w_{t}=j\right) \leqq \beta \sum_{t=0}^{j^{2}}(t+1)^{-\frac{1}{2}} \leqq \beta(j+1)$.
Therefore $\quad G^{[0, \infty)}(j, j) \leqq \beta(j+1) \sum_{n \geq 0} \alpha^{n}=(\beta / 1-\alpha)(j+1)$,
which is what we wanted to show.
Lemma 2. It holds uniformly in k and n that

$$
H_{(-\infty, 0) \cup(n, \infty)}(k,(n, \infty))-k / n \rightarrow 0 \quad(n \rightarrow \infty) .
$$

Proof. We shall give only a simple sketch of the proof because it runs along the same lines as the arguments of Lemmas 1-4 in [6], noting that the above-mentioned lemma acts as a substitute for Lemma 3 in [6]. Putting $A=[0, n]$ in 5° of $\S 2$ and using (2.3) and (c.3)', it is shown that $\sum_{j \in[0, n] c} j H_{[0, n]]^{c}}(k, j)=k$, from which we get

$$
\begin{aligned}
H_{[0, n]^{c}}(k,(n, \infty)) & =k / n-(1 / n) \sum_{j \leqslant-1} j H_{[0, n]^{c}}(k, j)-(1 / n) \sum_{j \geq n+1}(j-n) H_{[0, n]^{c}}(k, j) \\
& =k / n+I_{1}-I_{2} .
\end{aligned}
$$

But by (2.2) and Lemma 1
6) χ_{j} is the indicator function of the one point set $\{j\}$.

$$
\begin{aligned}
I_{1}= & -(1 / n) \sum_{l=0}^{n} G^{[0, n]}(k, l) \sum_{j \leq-1} j c_{j-l} \\
& \leqq(\beta / 1-\alpha)(1 / n) \sum_{l=0}^{n}(l+1) \sum_{j \geq 1} j c_{-j-l} \rightarrow 0 \quad(n \rightarrow \infty)
\end{aligned}
$$

since (c.2) guarantees the convergence of $\sum_{l \geq 0} \sum_{j \geq 1} j c_{-j-l}=\sum_{j \geq 1} j\left(\sum_{l \geq j} c_{-l}\right) .^{7}$
In the same way $I_{2} \rightarrow 0(n \rightarrow \infty)$, using $G^{(-\infty, 0]}(j, j)=O|j|$ which is a counterpart of Lemma 1.

Proof of Theorem. It is convenient to divide our proof into several steps.
(i) $\mu<\infty$. This is a special case of Theorem 3.4 of Spitzer [5]. In fact we have

$$
\mu=(v / 2)^{\frac{1}{2}} \exp \left\{\sum_{t=1}^{\infty} \frac{1}{t}\left[\frac{1}{2}-P_{0}\left(w_{t} \geqq 1\right)\right]\right\}<\infty
$$

(ii) $\quad H_{[1, \infty)}(0,1)>0$. $^{8)} \quad$ We define the right step hitting probability $p^{+}(k, j)=P_{k}\left\{\sigma_{j}<+\infty, w_{t}<w_{t+1}\right.$ for every $\left.t<\sigma_{j}\right\}$ and put $S^{+}=\left\{j ; p^{+}(0, j)\right.$ $>0\}$. It is clear that $j+j^{\prime} \in S^{+}$if both $j \in S^{+}$and $j^{\prime} \in S^{+}$. Therefore S^{+}contains all sufficiently large multiples of $d^{+}=$g.c.d. of $S^{+}=$g.c.d. $\left\{j ; j>0, c_{j}>0\right\}([2]$, p. 176). In the same manner we consider the left step hitting probability $p^{-}(k, j)$, the set $S^{-}=\left\{j ; p^{-}(0, j)>0\right\}$ and d^{-} $=$ g.c.d. $\left\{-j ; j \in S^{-}\right\}=$g.c.d. $\left\{-j ; j<0, c_{j}>0\right\}$. For all sufficiently large n $(>0),-n d^{+}$is in S^{-}. Since d^{+}and d^{-}are relatively prime by (c.4), there exist some $j^{+} \in S^{+}$and $j^{-} \in S^{-}$such that $j^{+}+j^{-}=1$. Consequently $H_{[1, \infty)}(0,1) \geqq p^{-}\left(0, j^{-}\right) p^{+}\left(j^{-}, 1\right)=p^{-}\left(0, j^{-}\right) p^{+}\left(0,1-j^{-}\right)=p^{-}\left(0, j^{-}\right) p^{+}\left(0, j^{+}\right)>0$. By the way we note that both S^{+}and S^{-}are not void according to (c.2) and (c.3)'.
(iii) $\sum_{j \leq 1} H_{[1, \infty)}(0, j)=p(0,[1, \infty))=1$. The condition (c.3)' implies that the point 0 (and therefore any point in S) is recurrent ([1], p.2). But since $p(0,1) \geqq H_{[1, \infty)}(0,1)>0$, it follows from 1° of $\S 2$ that $1=p(0,1)$ $\leqq p(0,[1, \infty))$.
(iv) $\quad H_{[n, \infty)}(0, n) \rightarrow \mu^{-1}(n \rightarrow \infty)$. Putting $A=[1, \infty), B=[n, \infty)$ and $E=n$ in 3° of $\S 2$, we get

$$
H_{[n, \infty)}(0, n)=\sum_{j \geq 1} H_{[1, \infty)}(0, j) H_{[n, \infty)}(j, n)=\sum_{j=1}^{n} H_{[1, \infty)}(0, j) H_{[n-j, \infty)}(0, n-j)
$$

which is the well-known renewal equation. Since $H_{[1, \infty)}(0, j)$ satisfies (i)-(iii), the Feller's renewal theorem ([3], p. 286) is applicable and our assertion is verified.
(v) Noting that $p^{[0, n)}(k, n)=H_{(-\infty, 0) \cup[n, \infty)}(k, n)$ and using (2.1), Lemma 2 and the above (iv), we have

$$
\begin{aligned}
& p^{[0, n]}(k, n)=H_{[n, \infty)}(k, n)-\sum_{j \leq-1} H_{(-\infty, 0) \cup[n, \infty)}(k, j) H_{[n, \infty)}(j, n) \\
& =H_{[n-k, \infty)}(0, n-k)-\sum_{j \leqq-1} H_{(-\infty, 0) \cup[n, \infty)}(k, j) H_{[n-j, \infty)}(0, n-j)
\end{aligned}
$$

7) In fact, $\sum_{j \geq 1}(2 j+1)\left(\sum_{l \geq j} c_{-l}\right)=\sum_{j \geq 1}\left(j^{2}+1\right) c_{-j}<+\infty$.
8) Our argument implies that x_{t} is irreducible, i.e. $p(k, j)>0$ for all $k, j \ni S$.

$$
\begin{aligned}
& =\mu^{-1}\left(1-\sum_{j \leq-1} H_{(-\infty, 0) \cup[n, \infty)}(k, j)\right)+o(1) \\
& =\mu^{-1} H_{(-\infty, 0) \cup[n, \infty)}(k,[n, \infty))+o(1)=\mu^{-1}(k / n)+o(1),
\end{aligned}
$$

where $o(1)$ tends to zero uniformly in k and n if $n-k \rightarrow \infty$. Thus our theorem has been proved completely.

Remark. It is easily seen that $p^{[0, n]}(k, n) \rightarrow H_{[j, \infty)}(0, j)$ if $n-k \rightarrow j$.
4. The symmetric case. We shall show that the theorem of $\S 3$ is a generalization of the Spitzer-Stone theorem stated in §1. To see this, assuming the condition (c.3) instead of (c.3)', we use the following facts which were established in Section 1 of [6]. (a) $G^{[0, n]}(k, j)$ $=\sum_{r=\max (k, j)}^{n} p_{r k} p_{r j}$, where $p_{r k}$'s are those defined in §1. (b) There exists $u_{0}=\lim _{n \rightarrow \infty} p_{n n}$ and there holds $\mu=(v / 2)^{\frac{1}{2}} u_{0}$. Then it results from (a) and 2° of §2 applied to $x_{t}^{[0, n]}$ that $p_{n k} p_{n n}=G^{[0, n]}(k, n)=p^{[0, n]}(k, n) G^{[0, n]}(n, n)$ $=p^{[0, n]}(k, n) p_{n}^{2}$. Therefore $p^{[0, n]}(k, n)=p_{n k} / p_{n n}$. Combining (b) and our theorem, the Spitzer-Stone theorem is immediate.

Remark. From (a) and (c.3), it is clear that $p_{n n}=\left[G^{[0, n]}(n, n)\right]^{\frac{1}{2}}$ $=\left[G^{[0, n]}(0,0)\right]^{\frac{1}{2}} \rightarrow\left[G^{[0, \infty)}(0,0)\right]^{\frac{1}{2}}$, so that (b) is reduced to show a probabilistic relation $E_{0}\left(w_{o[1, \infty]}\right)=2^{-\frac{1}{2}}\left[E_{0}\left(w_{1}^{2}\right) G^{[0, \infty)}(0,0)\right]^{\frac{1}{2}}$. But we have failed to give a simple probabilistic proof of this formula.

References

[1] K. L. Chung and W.H. J. Fuchs: On the distribution of values of sums of random variables, Mem. Amer. Math. Soc., 6, 1-12 (1951).
[2] J. L. Doob: Stochastic Processes, New York (1953).
[3] W. Feller: An Introduction to Probability Theory and its Applications, 1, 2nd ed., New York (1957).
[4] B. V. Gnedenko and A. N. Kolmogorov: Limit Distributions for Sums of Independent Random Variables (English translation from the Russian by K.L. Chung), Cambridge, Mass. (1954).
[5] F.L. Spitzer: A Tauberian theorem and its probability interpretation, Trans. Amer. Math. Soc., 94, 150-169 (1960).
[6] F. L. Spitzer and C. J. Stone: A class of Toeplitz forms and their application to probability theory, Ill. J. Math., 4, 253-277 (1960).
[7] T. Watanabe: On the theory of Martin boundaries induced by countable Markov processes, Mem. Coll. Science, Univ. Kyoto, ser. A, 33, 39-108 (1960).

