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1. Introduction. In their recent work [6], Spitzer and Stone
have proved the following interesting theorem which was the basis
of their discussion. Consider a sequence {c; k-O, +/-1, +/-2,.-.} satis-
lying the conditions:

(c.2)

c, O, c,--1,

0 < kc,=v< -t-,

(c.3)
(c.4) g.c.d. {k; k> O, c>0}-- 1.
Putting (6)-- , ce and noting 2:>1--()0, it follows that there

exists a unique sequence of polynomials [p.(z)----Jp,,z; p,,,:>O, n--O,

1, 2,...} satisfying

f-
for , re=O, 1,,-...

THEOREM (Spitzer and Stone). The relation
p,--(2/v)1/2(k/n)-O (n--k-->oo)

holds uniformly in k and n.
In this note we shall derive a more probabilistic version of the

above theorem under a weaker condition (c.3)’,kc-O instead of

(c.3). The main feature of our discussion is in full use of the general
theory of Markov chains. By doing so we can prove Theorem 2.1 in
[6J under (c.3)’ and substitute some simple probabilistic arguments
for the rather complicated calculations in [6] (e.g. Lemmas 5-11).

2. Markov chains. We now summarize some fundamental facts
on Markov chains (with discrete parameter). As to the details, we
refer the reader to Chap. I of [7].

Let S be a finite or denumerable space and T--(T(x, y); x, ye S),
a substochastic matrix" on S. Adding a new point e (called ’extra’
point) to S, we extend T to S=S{e} as follows: T(x, e)--l--, T(x, y),

T(e,e)--I and T(e,y)--O for yeS. For any x in , the new transition

1) T(.%y)_l for every
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matrix T=(T(x, y); , ye S) determines the Markov chain (ffi)(w), te D
--{0, 1, 2,..., + oo}) whose initial distribution is the unit distribution
at x, while x)(w)--e with probability 1. With no loss of generality
we can take the basic probability field (W, _,P) in the following

way. W is the set of all paths (S-valued function of t) satisfying
the conditions that w/-e and that if w--e, then w--e for every
st, where w means the value at t of the path w. is the ordinary
Borel field generated by all cylinder sets in W. P(.)coincides with

the joint distribution of x)(w). The system (W, , P, eS) with the
above choice for all is called the Markov chain over S associated
with T and is denoted simply by ,. For any fixed we W and seD,
the stopped path w: and shifted one w,+ are defined by
(t+oo), -e(t--Foo) and [w+]=w/, respectively. We define sev-
eral quantities and properties concerning the Markov chain. Let A
or E denote a subset of S. The hitting time to A, a(w)--min {t;wt
cA};2) the hitting probability from x to E, p(x,E)--P(as< +oo); the

Green measure G(x,E)--.P(wteE) and the harmonic measure to
t--O

A, H(x,E)--P(weE). The point x in S is called recurrent) if
P(a(w+)< +o)=1 and transient if it is not recurrent. Since the
notions of Markov times and the strong Markov property are well
known, we omit their precise description.

Let A be any subset of S. Then the restriction xf of xt to A is
defined as the Markov chain over A, (W,, P2, xeA’{e}), associated
with T(A)=(T(x, y); x, yeA). The new measure P2(.) corresponds to
the original one P(-) in the following simple manner. Considering
the transformation x(w) from W to W defined by
and --e(ta), we have P2(A)--P(w;x(w)eA) for every A.
The hitting probability and Green measure of xf are denoted by
p(x, E) and G(x, E) respectively.

The following results to be used later are well known (see
except the last two assertions.

1 If x is recurrent and p(x, y)>0, y is also recurrent and p(x,

2 If y is transient, G(x, y)--p(x, y)G(y, y)< + oo for any x.
8 If AB, H(x,E)=, H(x, y)H(y,E)for any x and E.

4 If AB-- and BE,
(2.1) H.,(x, E)--H,(x, E)--, H.(x, y)H,(y, E) for all x.

Noting that BE and using the strong Markov property to

2) If { } is void, (w)= +o conventionally.
3) In appearance this definition of recurrence is a little different to that of [7].

But in our discrete parameter case, both definitions are equivalent to each other.
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a/, the proof is straightforward.
5 For any ACS, xeA and any function u over At--S--A,

(2.2) u(y) H(x, y)-- S, 3q, G(x, z) T(z, y)u(y),
A .A A

which must be interpreted in the sense that the existence of the one
side of (2.2) implies that of the other and the equality holds. Espe-
cially if u is a function over S and v(z)= T(z, Y) u(Y) is integrable

with respect to the measure G(x,.), the right side of (2.2)can be
rewritten in the form
(2.3) G(x, z)[, T(z, y)u(y)--u(z) d- u(x).

zA yES

PROOF. Putting a(w)--a(w) and extending u to A+{e} by u(e)
--0, we have

the left side of (2.2)=E.(u(w,))--,E(u(we); a- t),’)

E(u(wo); a--O)--O (from xeA),
E(u(we); a--t)--E(u((w,+_i)); a(w2_)-- 1, a(w)> t-- 1)

=E(E_(u(w); a(w)--1); a(w)> t--l)
and therefore

>t

which verifies (2.2). The latter half is a direct consequence of the
formula G(x, z)T(z, y)--G(x, y)--(x, y)5) for every yeA.

:. Main results. Let S be the set of all integers and {c}, the

sequence over S satisfying the conditions (c.1), (c.2), (c.3)’ , kc=O
and (c.4)’ g.c.d. {I k I; c 0}- 1. It is evident that (c.3)’ is much weaker
than (c.3) and that (c.4)’ coincides with (c.4) if (c.3)is satisfied. We
consider the Markov chain x, corresponding to T(k, j)=c_, k, j e S.
For such Markov chain, it is well known that w/--w, t--0,1,2,-.-
are independent random variables having the same distribution {c}
relative to P(-) for any k and that, defining the shift transformation

0 on W by (Ow),-wtq-j, we have P(A)--P+(OA) for any A of .
In this connection our chain x may be called an additive Markov
chain. The open interval (k,j) of S means the set {/; leS, k<l<j].
The closed (or half open) interval of S should be understood in the
same manner. Adopting this convention and the notations introduced
2, our theorem is stated as follows:

THEOREM. Let x be the additive Markov chain defined just above.
Then I:jHc,)(O,j) converges and the relation

(3.1) p,’(k,n)--p-(k/n)-->O (n--k--> oo)

4) In general, Ex(f(w); means the integral of f(w) over the set A e relative
to the measure Px(-). If Px( )=1, we shall omit 1 in the expectation.

5) (, )=i (=), =0 ( ).



No. 7] On a Theorem of F. L. Spitzer and C. J. Stone 349

holds uniformly in k and n.
Before proving we prepare two lemmas, in which we have no

need of the aperiodicity condition (c.4)’.
LEMMA 1. G’(j,j):O(j).
PROOF. Consider the sequence of Markov times: r0(w)--0, r(w)

j + 1 + a(wj+), -.., r(w)--r_(w)+r(w+_), Putting a(w)
:a_.0(w), we have

nO k t=r
/rn+t-1

Applying the strong Markov property to r, and noting that
it follows that

P(r< a)P(r=_,<a)- P(r<a)]
But from the central limit theorem we get

P(r,< a) p1(j2<a)P(w,O) Po(w,--j)

=P0(--l)--lf e-dx+o(1)<a<a

where a is a constant independent of j. Moreover the local limit
theorem ([4], p. 233)shows that we can choose some constant fi such
that

P(w,=j)--Po(w,=O) fl(t+l)- for every teD,
whence E Z(w,) P(w,=J) (t+ 1)- (j+1).

kt=O t=0 t=0

Thereeore ao’(j, j) (j+ 1) .’-(/1-.)(j+ 1),
which is what we wanted to show.
L 2. It holds uniformly in k and n that

_..-.(k, (n, ))-k/nO (n).
PROOF. We shall give only a simple sketch of the proof because

it runs along the same lines as the arguments of Lemmas 1-4 in
noting that the above-mentioned lemma acts as a substitute for
Lemma in [6]. Putting A=[0, n] in 5 of 2 and using (2.)and
(c.8)’, it is shown that jHo,,(k, j)-- k, from which we get

Ho,.,(k, (n, ))- k/n-(1/n) jHo,,(k, j)--(1/n) (j--n)Ho,.,(k,

But by (2.2) and Lemma 1

6) x is the indicator function of the one point set
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I- -(l/n)] G,"(k, l) jc_z
=o .-

(flll--a)(lln) ,,(l+l) ,jc__,-O (n->oo),
=0 1

eounLerpr of emm 1.
PROOP OP ORM. It is convenient to divide our proof into

several
(i . his is speci] cse of heorem . of pizer

1 1

( ii ) H,(O, 1)> 0.’ Ne define the
*(,)-P{<+,w<w. for every t<l end ut S’--{; (0,)
>0}. It is elear tha +’S if both sS and ’e S*. herefore
S eonains 11 sueienly large multiples of d*-g.e.d, of S*--g.e.d.
{; >0, e>0} ([, . 176). In the same manner we consider the lft
te iti robilit -(,), the set S---{; -(0,)>0} and

g.e.d. {--; S-} =g.e.d. {-; <0, %>0}.
(>0), -g* is in S-. 8inca d* and g- are relatively rime by (cA)’,
there exis some * s S and - e S- such the * +---1. Consequently
g.(0,1) -(o,-)(-, 1)=-0,-)(o,--)--(o,-)(o,)>o.
By the way we note the boh S and S- are not oid according
(e2) and (e.8)’.

(ii) N.(0,)--(0, [1,))--1. he condition (e.8)’ implies

that the oint 0 (and therefore any int in S) is recurrent ([1, . ).
But sinee (0,1)H.(0,1)>0, it follows from 1 of that 1--(0,1)

(0, [1, )).
(i) H,(O,)- (). Putting A- [1,), N- [,) and

N= in 8 of , we get

..(0,)-Ng.(0,)g.(L)-Ng.(o,)N_.(o, -),
which is the well-known renewal equation. Since H:.)(0,j) satisfies
(i)-(iii), the Feller’s renewal theorem ([3J, p. 286) is applicable and
our assertion is verified.

(v) Noting that p:O,)(k, n)--H(_,o)-,)(k, n) and using (2.1),
Lemma 2 and the above (iv), we have

’,’(k, n) H.,)(k, n) ZH(_,,).,)(k,)H,)(, n)

=H._,)(0, n--k)-- H(_,,).,)(k,)H._,)(O, n--)

7) In fact, .(2+l)(c_)--(/l)c_j<:+o.

8) Our argument implies that zt is irreducible, i.e. p(k,:):>O for all k, ’S.
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:-(1-- ,, H(_oo.0),-,r,,.oo)(k, .))-i- o(1)
.,-1

:-Hc_.0),.(R))(k, [n, ))+o(1)=-(k/n)+o(1),
where o(1) tends to zero uniformly in k and n if n--k-->oo. Thus
our theorem has been proved completely.

REMARK. It is easily seen that p[’(k,n)-->H..)(O,j) if n--k->j.
4. The symmetric case. We shall show that the theorem of 3

is a generalization of the Spitzer-Stone theorem stated in 1. To see
this, assuming the condition (c.3) instead of (c.3)’, we use the follow-
ing facts which were established in Section 1 of [6. (a) G:O"(k,j)

_J p,p,, where p,’s are those defined in 1. (b) There exists

u0limp and there holds p--(/2)Uo Then it results from (a)and

2 of 2 applied to x," that pp=G’(k, n)=p.(k, n)G.’(n, n)
=p’(k,n)p. Therefore p"(k,n)=p,/p,. Combining (b) and o
theorem, the Spitzer-Stone theorem is immediate.

REMARK. From (a) and (c.3), it is clear that p=[G.(n, n)J
=[G:’(0,0)J*[G’)(0,0)], so that (b) is reduced to show a proba-
bilistic relation Eo(w,.)=2-[Eo(w)G:’)(O, 0)] t. But we have fail
to give a simple probabilistic proof of this formula.

References

[1] K. L. Chung and W. H. J. Fucks: On the distribution of values of sums of random
variables, Mere. Amer. Math. Soc., 6, 1-12 (1951).

[2] J.L. Doob: Stochastic Processes, New York (1953).
[3] W. Feller: An Introduction to Probability Theory and its Applications, 1, 2nd

ed., New York (1957).
[4] B. V. Gnedenko and A. N. Kolmogorov: Limit Distributions for Sums of Inde-

pendent Random Variables (English translation from the Russian by K.L. Chung),
Cambridge, Mass. (1954).

[5] F.L. Spitzer" A Tauberian theorem and its probability interpretation, Trans.
Amer. Math. Soc., 94, 150-169 (1960).

[6] F. L. Spitzer and C. J. Stone: A class of Toeplitz forms and their application
to probability theory, Ill. J. Math., 4, 253-277 (1960).

[7] T. Watanabe: On the theory of Martin boundaries induced by countable Markov
processes, Mere. Coll. Science, Univ. Kyoto, ser. A, 33, 39-108 (1960).


