79. Three Primes in Arithmetical Progression

By Saburô Uchiyama
Department of Mathematics, Hokkaidô University, Sapporo, Japan

(Comm. by Z. Suetuna, m.J.A., July 12, 1961)

1. One of the long-standing conjectures on the distribution of prime numbers states that there are infinitely many m-plets of primes $p_{1}, p_{2}, \cdots, p_{m}$ in arithmetical progression for every $m>2$, which is, at least, empirically true. Unfortunately, however, we cannot at present prove (or disprove) the existence of such an m-plet of primes for an unspecified value of the number m. Some sequences of prime numbers are known to be in arithmetical progression. For example, the ten numbers

$$
119+210 n \quad(n=0,1,2, \cdots, 9)
$$

are all primes (cf. [1]).
Our aim in the present note is to show that there exist infinitely many triplets of primes p_{1}, p_{2}, p_{3} in arithmetical progression, i.e. such that $p_{1}<p_{3}$ and

$$
p_{1}+p_{3}=2 p_{2} .
$$

In fact, we can prove somewhat more. Let a be a positive integer, b an arbitrary integer, and let $N(x, a, b)$ denote the number of solutions of

$$
p_{1}+p_{3}=a p_{2}+b
$$

in prime numbers p_{1}, p_{2}, p_{3} with $2 \leqq p_{j} \leqq x(j=1,2,3)$. Then there holds the following

Theorem. We have

$$
N(x, a, b)=C(a, b) T(x, a, b)+O\left(x^{2}(\log x)^{-A}\right) \quad(x \rightarrow \infty)
$$

for every $A>3$, where the O-constant depends possibly on a, b and A and where

$$
\begin{gathered}
C(a, b)=\prod_{p|a, p| b} \frac{p}{p-1} \prod_{\substack{|a, p, p \nmid b \\
p \nmid a, p| b}} \frac{p(p-2)}{(p-1)^{2}} \prod_{p \nmid a b}\left(1+\frac{1}{(p-1)^{3}}\right) ; \\
T(x, a, b)=\sum\left(\log n_{1} \log n_{2} \log n_{3}\right)^{-1},
\end{gathered}
$$

the summation being extended over all integer solutions n_{1}, n_{2}, n_{3} of the equation

$$
n_{1}+n_{3}=a n_{2}+b
$$

with $2 \leqq n_{j} \leqq x(j=1,2,3)$.
It is easy to see from our result that $C(a, b)>0$ unless a and b have a different parity and, in particular, we have

$$
C(2,0) \geqq 2(\zeta(2))^{-1}=\frac{12}{\pi^{2}}
$$

Also, it should be noted that

$$
T(x, a, b)>\frac{1}{2 a} \frac{x^{2}}{(\log x)^{3}} \quad\left(x>x_{0}(a, b)\right)
$$

2. We shall give only a sketchy proof of our theorem. There is a standard method due to I. M. Vinogradov [3] of trigonometrical sums by means of which one can deal with problems on prime numbers of the kind here considered. Thus we define the function

$$
S(t)=\sum_{p \leq x} e(p t),
$$

where p runs through the primes and $e(t)=\exp 2 \pi i t$. We have

$$
N(x, a, b)=\int_{I}(S(t))^{2} S(-a t) e(-b t) d t
$$

for any interval I of unit length.
Put for a positive integer q

$$
G(q)=\frac{(\mu(q))^{2} c_{q}(a) c_{q}(b)}{(\phi(q))^{3}}
$$

where $c_{q}(n)$ denotes Ramanujan's sum, i.e.

$$
c_{q}(n)=\sum_{\substack{d \leq h<q \\(h, q, q=1}} e\left(\frac{h n}{q}\right)=\sum_{d \mid(n, q)} d \mu\left(\frac{q}{d}\right) .
$$

Let B be an arbitrary but fixed real number greater than $2 A+7$ and set $Q=(\log x)^{B}$. Then, just as in [2], we deduce from the above identity for $N(x, a, b)$ the following asymptotic equation:

$$
N(x, a, b)=\sum_{1 \leq q \leq e} G(q) T(x, a, b)+O\left(x^{2}(\log x)^{-1}\right)
$$

Now we have for any $\varepsilon>0$

$$
G(q)=C(a, b)+O\left((\log x)^{-B(1-\varepsilon)}\right)
$$

on noticing that $G(q)$ is a multiplicative function of q, i.e. that $\left(q_{1}, q_{2}\right)=1$ implies $G\left(q_{1} q_{2}\right)=G\left(q_{1}\right) G\left(q_{2}\right)$.

It follows that

$$
\begin{aligned}
N(x, a, b)= & C(a, b) T(x, a, b)+O\left(T(x, a, b)(\log x)^{-B(1-\varepsilon)}\right) \\
& +O\left(x^{2}(\log x)^{-4}\right),
\end{aligned}
$$

and this completes the proof of our theorem since

$$
T(x, a, b)=O\left(x^{2}(\log x)^{-3}\right) .
$$

References

[1] L. E. Dickson: History of the Theory of Numbers, 1, New York (1934). Especially, Chap. XVIII, 425-426.
[2] K. Prachar: Primzahlverteilung, Springer-Verl., Berlin-Göttingen-Heidelberg (1957). Especially, Chap. VI.
[3] I. M. Vinogradov: The method of trigonometrical sums in the theory of numbers (in Russian), Trav. Inst. Math. Stekloff, 23 (1947).

