12 [Vol. 18,

3. Note on the Fundamental Domain of a General Fuchsian Group.

By Masao Sugawara.

Tokyo Bunrika Daigaku, Tokyo.

(Comm. by T. TAKAGI, M.I.A., Jan. 12, 1942.)

Let R be the general Poincaré-space $(Z; N(Z) \leq 1)^{1}$ and $W = (U_1Z + U_2)(U_3Z + U_4)^{-1}$ be a displacement of a general fuchsian group \mathfrak{G} ; namely

$$U = \begin{pmatrix} U_1 & U_2 \\ U_3 & U_4 \end{pmatrix}, \qquad U'S\bar{U} = S, \qquad S = \begin{pmatrix} E_m & 0 \\ 0 & -E_n \end{pmatrix}.$$

Definition. When $U_3 \neq 0$, we denote the domain $(Z; ||U_3Z + U_4|| \geq 1)$ by the symbol M(U). A point Z is an inner or a boundary or an outer point of M(U) according as $||U_3Z + U_4|| > 1$ or $||U_3Z + U_4|| > 1$.

Theorem 1. 1°. If $U_3 \neq 0$, $|E - \overline{W}'W|$ is greater than, equals to, or smaller than $|E - \overline{Z}'Z|$ according as Z is an outer or a boundary or an inner point of M(U); the converse also holds.

2°. If however $U_3=0$, $|E-\overline{W}'W|=|E-\overline{Z}'Z|$.

Proof. 1°. It comes from the equality

$$||U_3Z+U_4||^{-2}=|E-\overline{W}'W||E-\overline{Z}'Z|^{-1}$$
.

which I deduced in another place²⁾.

2. In this case $W = U_1 Z U_4^{-1}$, where U_1 and U_4 are unitary, so that the result is evident.

We denote the intersection of R and all the domains M(U) by M. Theorem 2. Let Z_0 be a point which gives the maximum value of $|E-\overline{Z}'Z|$ among the points equivalent to Z_0 and let D be the set of such points as Z_0 , then D=M.

Proof. Let Z_1 be an inner point of the space R, the number of such points Z equivalent to Z_1 that give $|E-\overline{Z}'Z| \ge |E-\overline{Z}'Z_1|$ is finite, because the series

$$\sum_{U\subset\mathfrak{E}}\mid U_3Z+U_4
vert^{-k(n+m)},\qquad k\geqq 2^{3)}$$
 ,

is absolutely convergent at an inner point of R.

As a point equivalent to an inner point of R is also an inner point of R, the maximum value of the expression $|E-\bar{Z}'Z|$ is really taken at an inner point of R equivalent to Z_1 .

On the other hand, a point equivalent to a boundary point of R is also a boundary point of R and it is always $|E-\overline{Z}'Z|=0$, when N(Z)=1. Now let $Z \in M$ and let Y be a point equivalent to Z, namely $Y=(U_1Z+U_2)$ (U_3Z+U_4) , then $|E-\overline{Z}'Z| \ge |E-\overline{Y}'Y|$, if $U_3 \ne 0$, and

¹⁾ N(Z) means the norm of Z.

²⁾ M. Sugawara. On the general Zetafuchsian Functions,

³⁾ In the case of symmetrical matrices the exponent is -k(n+1).

 $|E-\bar{Z}'Z|=|E-\bar{Y}'Y|$, if $U_3=0$. Hence we get $Z \in D$. Conversely let $Z \in D$, then $|E-\bar{Z}'Z| \ge |E-\bar{Y}'Y|$ for every point Y equivalent to Z. Hence we get $Z \in M$. Therefore we have at last M=D.

The transformations, in which $U_3=0$, make a subgroup \mathfrak{S} of \mathfrak{S} in all. As the group of unitary transformations is compact, \mathfrak{S} is finite of the order k, because, if otherwise, it would contain an infinitesimal transformation.

Now we introduce the euclidean metric in R, namely as the distance between two points A and B we take the expression $\sqrt{\operatorname{Sp.}(A-B)'(A-B)}$ invariant under the transformation $W=U_1ZU_4^{-1}$. Let Z_1 be such a point of M that the points Z_1, Z_2, \ldots, Z_k equivalent to Z_1 , which are of course points of M, are all different to one another. We denote the set of points of M each of which has the shortest distance in this metric from Z_1 among the distances from the other Z_i by the symbol M_0 , then we have

Theorem 3. M_0 is a fundamental domain of the fuchsian group \mathfrak{G} . Proof. It is evident that every point Z of R has at least one image in M_0 . Let Z_1 and Z_2 be two points of M_0 , and Z_1 is equivalent to Z_2 by the transformation U of the group \mathfrak{G} . If $U_3 \neq 0$, we have $|E - \overline{Z}_1'Z_1| \geq |E - \overline{Z}_2'Z_2|$ as Z_1 is in M(U) and $|E - \overline{Z}_2'Z_2| \geq |E - \overline{Z}_1'Z_1|$ as Z_2 is in $M(U^{-1})$. Hence we get $|E - \overline{Z}_1'Z_1| = |E - \overline{Z}_2'Z_2|$. Therefore Z_1 and Z_2 lie on the boundary of M(U) and $M(U^{-1})$; so that they are boundary points of M, thus of M_0 .

If however $U_3=0$, they are also boundary points of M_0 by the definition of M_0 . Therefore M_0 is a fundamental domain of \mathfrak{G} .

Remark. An inner point of M_0 can not be equivalent to a boundary point and two equivalent boundary points give the same value of the expression $|E-\bar{Z}'Z|$.