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By a lattice-ordered group, or briefly a lattice-group, we mean a
(not necessarily abelian) group which is at the same time a lattice such
that the order relation is preserved under left and right multiplica-
tion; a b implies ac bc and ca <:__ cb we have ac bc= (a’ b)c,
ca cb c(a b) too.

Abelian lattice-groups, particularly so-called vector lattices, have
been studied by many authors. The present short note is to give
some simple remarks concerning mainly with non-abelian lattice-groups.
We shall begin with elementary observations about homomorphisms.
We shall then show that Lorenzen’s main theorem for abelian lattice-
groups can be transfered to the non-abelian case with minor modifica-
tions. However, this does not give, contrary to Clifford’s abelian case,
a representation of the lattice-group by linearly ordered ones" it gives
merely a representation of the lattice-group by linearly ordered systems
of cosets with respect to its subgroups. It follows readily that every
lattice-group is, considered as a lattice, distributive. This fact, how-
ever, can easily be seen also by modifying somewhat the well-known
proofs to the distributivity of abelian lattice-groups>. The structure
of lattice-groups satisfying the conditional (=weak)maximum condition
is very simple and rather triviaI; they are necessarily abelian6. We
shall also observe that a recent result by Yosida-Fukamiyd concerning

1) R. Dedekind, Ober Zerlegung von Zahlen durch ihre grSssten gemeinschaft-
lichen Teiler (Ges. Werke, Bd. 2, XXVIII); P. Lorenzen, Abstrakte Begriindung der
multiplikativen Idealtheorie, Math. Zeitschr. 4; (1939) A.H. Clifford, Partially ordered
abelian groups, Ann. Math. 41 (1940).

2) L.V. Kantorovitch, Lineare halbgeordnete Riume, Mat. Shornik 2 (1937); H.
Freudenthal, Teilweise geordnete Moduln, Proc. Amsterdam 39 (1936). For some of
more recent literatures see the references in G. Birkhoff, Lattice theory, New York
(1940); K. Yosida, On vector lattice with a unit, Proc. 17 (1941).

3) I want to express my thanks to Mr. K. Yosida for the useful remarks he gave
me during the preparation of the present note.

4) For abelian case see Dedekind, 1. c., Freudenthal, I. c. and Birkhoff, 1. c.
5) As a matter of fact, the essential feature of this fact is contained already in

the commutativity of two-sided ideals in the arithmetical theory of algebras, non-
commutative polynomicals and non-commutative semi-groups. Besides early works by
E. Artin, 0. Ore and others, cf. K. Asano, Arithmetische idealtheorie in nichtkom-
mutativen Ringen, Jap. Journ. Math. 16 (1939); Y. Kawada-K. Kondo, Idealtheorie in
nicht-kommutativen Halbgruppen, ibid. 16 (1939); T. Nakayama, A note on the ele-
mentary divisor theory in non-commutative domains, Bull. Amer. Math. Soc. 44 (1938).

6) This is a very simple; and trivial, special case of G. Birkhoff’s conjecture that
conditionally complete lattice-groups will always be abelian. The conjecture was com-
municated to me by S. Kakutani.

7) K. Yosida-M. Fukamiya, On vector lattice with a unit, II., Proc. 17 (1941).
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vector-lattices with Archimedean units may be obtained also by means
of Lorenzen-Clifford’s theorem.

1. Let G be a lattice-group. A subgroup H of G shall be called
an re.subgroup, if h, h eH and h r h. x .hw h imply x e H. For
an m-subgroup H we define the join Ha Hb of two right cosets Ha,
Hb rood. H to be the coset H(a b) of a b this does not depend
on the choice of the representatives, because if h, heH then (h h.)
(a b) ha h.b (h h) (a b), h h (ha h.b) (a b)-h w h_ whence (ha hb)(a b)- e H. Similarly we put Ha r Hb
H(a r b). Then the totality (G/H) of right cosets rood. H becomes
a lattice, and a--Ha is a lattice-homomorphism of G onto (G/H).
It is evident that conversely if a-Ha is a lattice-homomorphism then
H is an m-subgroup. If in particular H is an invariant m-subgroup
then the factor group G/H is, under the compositions w, r defind
above, a lattice-group, and a-Ha is a lattice-group-homomorphism of
G onto G/H); and, conversely every lattice-group-homomorphism of G
is given rise by a suitable invariant m-subgroup.

In order that the lattice (G/H) be linearly ordered, it is necessary
and sufficient that a 1, b 1, a H, b H imply a w b H; 1 be-
ing the unit element of G. The necessity is evident. But, if (G/H)
is not linearly ordered, there exist a and b such that H(a b) :> Ha,
Hb and then for a=a(a b)-, b=b(a b)- we have a, b 1, a,
bCH but awb=leH.

2. An element a of G is called integral, when a 1. We de-
note the totality of integral elements by ft. a=a for every a eG.
By an s-ideal2) we mean a subset a of G bounded from above such
that a(=a=a) (whence =) a; this last condition is the M-closed-
ness in the lattice-theory. An s-ideal a is called a t-ideal when a,
be a implies a w be a; it is a lattice-ideal of G. An (s- or t-) ideal a
is called integral when a q. An integral ideal p is said to be prime
if a, a2 P implies ala2 P; it is evident that then a r a2 p too. If
p is a prime ideal and a e -p then ap= pa, because apa-a p whence
apa- p and similarly ape- p. A maximal (integral) t.ideal p is
always prime; for, if a, a2eq-p then pa=l for suitable pep
(i 1, 2) and 1 (pp2 pa2 ap2) aa2 whence aa2 p.

Let p be a prime s-ideal, and denote the totality of the elements
of the form ac- (ae , c e -p) by ; observe that ac-=c-a/ where
a=cac-e . is a semi-group, since aca2cZ=a(ca2c)(c.c)- and
here a(cac) e , c2c e-p when a, a2 e fl, c, a2 e fl p. Furthermore,
it is a lattice-ideal of G. For, d=c rc2P too and acw a2cZ=
(a(;d)a2(cZd))d-. Thus the totality fl(-) of the inverses of the

elements in fl is a semi-group which is, at the same time, a dual
lattice-ideal of G. Hence the intersection H=, r .q-), that is, the
set of units of ,, is an m-subgroup of G. fl is the M-closure of H,
as one readily sees.

Now, if p is a prime (not only s-but) t-ideal, then the lattice

1) For abelian case cf. G. Birkhoff’s book, 1. c. 136.
2) See Lorenzen, 1. c.
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(G/H) of right cosets mod. H, is linearly ordered; this is equivalent
to saying that for every x in G at least one of and x- lies in ,.
To see this, observe that a non-unit f of q (that is, an element f of

whose inverse f- is not in ) is of a form f=pc- (pep, c e -p),
and that the join pc pc= (p(cld) p.(cd))d- (d=c r c) of
two non-units pc and pc is again a non-unit of fi, since de -p.
The assertion follows thus immediately from a remark at the end of 1.

Now, let x . Then (1 w x)- <: 1. There exists a maximal
ideal p which contains (1 x)-; P is prime. Then x, since other-
wise 1 x e .

From these considerations we have)

Theorem 1. Let G be an arbitrary lattice-group. The semi-group
fl of its integral elements is the intersection = of all the quotient-
semi-group fl, of fi with respect to maximal t-ideals p. has the pro-
petty that x fl implies x- e

Theorem 1’. a- Ha, ) is a faithful lattice-homomorphic
mapping of G into the direct product of the linearly
ordered lattices =(G/H) of cosets. The homomorphic mapping is
preserved under right-hand side multiplication by group elements.

3. From Theorem 1’ follows immediately
Theorem 2. Every group-lattice is, considered as a lattice, dis-

tributive.
This fact can, however, easily be seen also by modifying a little

the well.known proofs to the distributivity of abelian lattice-groups.
For instance, it is sufficient to show that relative complementation is
unique in G). Let, therefore, a w x a w y, a r x a r y in G. Then
1 a-x= 1 a-y, 1 r a-x= 1 r a-y. On multiplying the equalities
side by side, we get a-x=(1 w a-x)(1 a-x)=(1 a-y)(1 a-y)=
a-y. Hence x=y, and the distributivity of G is shown

4. Assume in this section that our lattice-group G satisfies the
conditional maximum condition: every ascending chain bounded from
above is finite. (Then the conditional minimum condition is fulfilled too).
Every (s- or t-) ideal a has a maximal element, and it is a unique
maximal element if a is a t-ideal. Thus every t-ideal is principal,
a a a. Let in particular p=p=p be a prime t-ideal. Evidently
pp=pp. But, for every x in G there is an n such that 1
and xp- is, as was observed before, commutative with p. Hence
xp=px too, and the m-subgroup H is invariant.

The linearly ordered group qi=G/H satisfies the conditional
maximum condition, and therefore, it is an (infinite) cyclic group
generated by its largest integral element. It is now easy to obtain

Theorem 3. A lattice-group satisfying the conditional maximum
condition is isomorphic, as a lattice-group, with a restricted direct pro-

1) Cf. Lorenzen, 1. c., Satz 11 and Clifford, 1. c., Theorem 2.
2) Cf. Birkhoff, 1. c., 137.
3) Similarly, Freudenthal’s proof can easily be modified so as to apply to the

non-abelian case. The same is the case also for Ho Nakano’s proof (Zenkoku-Sizyo-
Sugaku-Danwakwai 228 (1941), in Japanese).
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duct of a (finite or infinite) number of linearly ordered groups iso-
morphic to the (additive) group of rational integers. In particular, it
is abelian.

;. Consider now a (not necessarily abelian) linearly ordered
lattice-group with an Archimedean unit I; for every e there ex-
ists an n so that I<: I-. After Yosida-Fukamiya, let us call an
element nilpoen if I<:: <: I- for all i= 1, 2, The totality
9 of nilpotent elements is an n-subgroup of , because if y then
x < (xy) y2. On the other hand, any n-subgroup of q: not coin-
ciding with consists only of nilpotent elements. Thus 9 is the uni-
que maximal n-subgroup of .

Now, let G be an abelian lattice-group with an Archimedean unit
/. Then, for each maximal -ideal p, the coset H,I of I mod. H is an
Archimedean unit of the linearly ordered group G/H. It is further evi-
dent that in order that an element of G be nilpotent (that is, I<:: <: I-for i=l, 2, it is necessary and sufficient that H, is nilpotent in
=G/H for every p. Therefore, if is not nilpotent, then for a
suitable maximal t-ideal p H9, where 9l, denotes the unique
maximal n-subgroup of , and thus the lattice-group-homomorphism
G-:-/9 of G onto the simple lattice-group /9 does not map

onto the unit class. It is obvious that conversely if there is a
lattice-group-homorphism of G onto a simple lattice-group not mapping
an element to the unit class, then is not nilpotent; observe that
a simple abelian lattice-group is linearly ordered. Thus the totality
of nilpotent elements in G coincides with the intersection of all the
kernels of (lattice-group-)homomorphic mappings of G onto simple
lattice-groups.

The same remains true when G has the linearly ordered group of
real number as an operator group, that is, when G is a vector-lattice,
and so Yosida-Fukamiya’s theorem is proved)).

1) Yosida-Fukamiya, 1. c., Theorem 1.
2) K. Yosida has pointed out that in case of an abelian lattice-group G its em-

bedding into a direct product of linearly ordered groups may be obtained also from
the following argument: Let G be additively written, and let x be a non-zero ele-
ment in G. If G is not linearly ordered, then there exists a non-trivial m-subgroup
(an ideal in Yosida’s terminology)M not containing x. To see this, suppose a b,
a b. Denote by M the m-subgroup consisting of all the elements x such that
x n((b-a) O) for some n, where Ix ]-(x 0)-(x 0). Similarly, let M be the

set of x such that ]x I__<: n((a-b),.,O) for some n. Then at least one of M and M
does not contain x and may be employed as our M.


