47. On the Curves Developable on Two-dimensional Spheres in the Conformally Connected Manifold.

By Kentaro Yano and Yosio Mutô.
Mathematical Institute, Tokyo Imperial University.
(Comm. by S. Kakeya, m.i.A., May 12, 1942.)

In two previous papers ${ }^{1)}$, we have obtained the following Frenet formulae :
(1)
for the curves in the conformally connected manifold, and have shown that the curve for which $\lambda=\stackrel{4}{\lambda}=\cdots=\lambda=0$ is a generalized loxodrome which cuts all the circles passing through two fixed points always by the fixed angle $\frac{\pi}{4}$, and the curves for which $\lambda=$ const. and $\stackrel{4}{\lambda}=\cdots=\stackrel{\infty}{\lambda}=0$ are the generalized loxodromes which cuts all such circles by the fixed angle $\frac{\pi}{4}-\frac{\varphi}{2}$, where $\lambda=\tan \varphi$.

In the present paper, we shall deal with the curves for which $\stackrel{4}{\lambda}=\cdots=\stackrel{\infty}{\lambda}=0, \lambda$ being in general the function of the conformal arc length σ. In this case, if we develop our curve on the tangent conformal space at a point of the curve, its development will be on a two-dimensional sphere, thus, we can treat the curve as if it were in a two-dimensional flat conformal space.

The main theorem which we propose to prove in this paper is the following :

Theorem: If we take a circle which cuts the curve by a certain

[^0] angle $\alpha\left(0 \leqq \alpha \leqq \frac{\pi}{2}\right)$ and assume that this circle and its four consecutive circles, which cut the curve also by the same angle α and not cut mutually, belong to a coaxal system, then we must have, at the point,
$$
\tan 2 \alpha=-\frac{1}{\lambda}
$$
the limiting points P and Q of the system being given by
\[

$$
\begin{aligned}
& P=\frac{\sec ^{2} \alpha}{2 \sqrt{\tan \alpha}} A+\tan \underset{(1)}{A}+\sqrt{\tan \alpha} \underset{(2)}{A}+\underset{(3)}{A}, \\
& Q=-\frac{\sec ^{2} \alpha}{2 \sqrt{\tan \alpha}} A+\tan \underset{(1)}{A}-\sqrt{\tan \alpha} \underset{(2)}{A}+\underset{(3)}{A} .
\end{aligned}
$$
\]

The point $\underset{\text { (2) }}{A}$ is the intersection of the osculating circle of the curve and the circle $\underset{(1)}{A-\tan } \underset{\text { (3) }}{A}$ which cuts all the circles of the system orthogonally and passes through four points $P, Q, \underset{(0)}{A}$ and $\underset{(2)}{A}$.

Proof. The circle K which cuts the curve by a fixed angle α ($0 \leqq \alpha \leqq \frac{\pi}{2}$) may be expressed as follows:

$$
\begin{equation*}
K=f(\sigma) \underset{(0)}{A}+\tan \underset{(1)}{\alpha}+\underset{(3)}{A} \tag{2}
\end{equation*}
$$

where $f(\sigma)$ is a function of the conformal arc length σ.
Differentiating the circle K with respect to σ, and taking account of the Frenet formulae, we have successively
(3) $\quad K^{\prime}=\left(f^{\prime}+\lambda \tan \alpha+1\right) \underset{(0)}{A}+\underset{\text { (1) }}{A}+\tan \underset{\text { (2) }}{A}$,
(4) $\quad K^{\prime \prime}=\left(f^{\prime \prime}+\lambda^{\prime} \tan \alpha+\lambda f\right) \underset{(0)}{A}+\left(2 f^{\prime}+2 \lambda \tan \alpha+1\right) \underset{(1)}{A}+\underset{(2)}{f}+\tan \alpha \underset{(3)}{A}$,
(5) $\quad K^{\prime \prime \prime}=\left(f^{\prime \prime \prime}+\lambda^{\prime \prime} \tan \alpha+\lambda^{\prime} f+3 \lambda f^{\prime}+2 \lambda^{2} \tan \alpha+\lambda+\tan \alpha\right) \underset{(0)}{A}$

$$
+\left(3 f^{\prime \prime}+3 \lambda^{\prime} \tan \alpha+2 \lambda f\right) \underset{(1)}{A}+\left(3 f^{\prime}+2 \lambda \tan \alpha+1\right) \underset{(2)}{A}+\underset{(3)}{A}
$$

(6)

$$
\begin{aligned}
K^{\prime \prime \prime \prime}= & \left(f^{\prime \prime \prime \prime}+\lambda^{\prime \prime \prime} \tan \alpha+\lambda^{\prime \prime} f+4 \lambda^{\prime} f^{\prime}+6 \lambda f^{\prime \prime}\right. \\
& \left.+7 \lambda \lambda^{\prime} \tan \alpha+\lambda^{\prime}+2 \lambda^{2} f+f\right) \underset{(0)}{A} \\
& +\left(4 f^{\prime \prime \prime}+4 \lambda^{\prime \prime} \tan \alpha+3 \lambda^{\prime} f+8 \lambda f^{\prime}+4 \lambda^{2} \tan \alpha+2 \lambda+\tan \alpha\right) \underset{(1)}{A} \\
& +\left(6 f^{\prime \prime}+5 \lambda^{\prime} \tan \alpha+2 \lambda f\right) \underset{(2)}{A}+\left(4 f^{\prime}+2 \lambda \tan \alpha+1\right) \underset{(3)}{A},
\end{aligned}
$$

where dushes denote the differentiation with respect to σ.
If, at a point of the curve, the five consecutive circles belong to a coaxal system, then the circles $K^{\prime \prime}, K^{\prime \prime \prime}$ and $K^{\prime \prime \prime \prime}$ must be the linear combinations of the two circles K and K^{\prime}.

Thus, expressing the condition that $K^{\prime \prime}$ is a linear combination of K and K^{\prime}, we have
(7) $f^{\prime \prime}+\lambda^{\prime} \tan \alpha+\lambda f=f \tan \alpha+f \cot \alpha\left(f^{\prime}+\lambda \tan \alpha+1\right)$,
(8) $2 f^{\prime}+2 \lambda \tan \alpha+1=\tan ^{2} \alpha+f^{2} \cot \alpha$.

Similarly, the fact that $K^{\prime \prime \prime}$ is a linear combination of K and K^{\prime} gives us
(9) $f^{\prime \prime \prime}+\lambda^{\prime \prime} \tan \alpha+\lambda^{\prime} f+3 \lambda f^{\prime}+2 \lambda^{2} \tan \alpha+\lambda+\tan \alpha$

$$
=f^{2}+\cot \alpha\left(3 f^{\prime}+2 \lambda \tan \alpha+1\right)\left(f^{\prime}+\lambda \tan \alpha+1\right)
$$

(10) $3 f^{\prime \prime}+3 \lambda^{\prime} \tan \alpha+2 \lambda f=f \tan \alpha+f \cot \alpha\left(3 f^{\prime}+2 \lambda \tan \alpha+1\right)$.

Finally, $K^{\prime \prime \prime \prime}$ being also a linear combination of K and K^{\prime}, we find
(11) $f^{\prime \prime \prime \prime}+\lambda^{\prime \prime \prime} \tan \alpha+\lambda^{\prime \prime} f+4 \lambda^{\prime} f^{\prime}+6 \lambda f^{\prime \prime}+7 \lambda \lambda^{\prime} \tan \alpha+\lambda^{\prime}+2 \lambda^{2} f+f$
$=f\left(4 f^{\prime}+2 \lambda \tan \alpha+1\right)+\cot \alpha\left(6 f^{\prime \prime}+5 \lambda^{\prime} \tan \alpha+2 \lambda f\right) \times$ $\left(f^{\prime}+\lambda \tan \alpha+1\right)$,

$$
\begin{align*}
4 f^{\prime \prime \prime}+ & 4 \lambda^{\prime \prime} \tan \alpha+3 \lambda^{\prime} f+8 \lambda f^{\prime}+4 \lambda^{2} \tan \alpha+2 \lambda+\tan \alpha \tag{12}\\
& =\tan \alpha\left(4 f^{\prime}+2 \lambda \tan \alpha+1\right)+f \cot \alpha\left(6 f^{\prime \prime}+5 \lambda^{\prime} \tan \alpha+2 \lambda f\right)
\end{align*}
$$

Now, forming the equation (7) $\times 3-(10)$, we have

$$
\begin{gathered}
\lambda f=2 f \tan \alpha+\lambda f+2 f \cot \alpha, \\
2 f(\tan \alpha+\cot \alpha)=0,
\end{gathered}
$$

from which

$$
\begin{equation*}
f=0 . \tag{13}
\end{equation*}
$$

Substituting this value of f in the equation (8), we have

$$
\begin{equation*}
f^{\prime}=\frac{1}{2}\left(\tan ^{2} \alpha-2 \lambda \tan \alpha-1\right) \tag{14}
\end{equation*}
$$

If $f=0$ is substituted in (7) or (10), we find

$$
\begin{equation*}
f^{\prime \prime}=-\lambda^{\prime} \tan \alpha \tag{15}
\end{equation*}
$$

If we substitute the value of f, f^{\prime} and $f^{\prime \prime}$ in (9) and (12), we have respectively

$$
\begin{align*}
4 f^{\prime \prime \prime}= & -4 \lambda^{\prime \prime} \tan \alpha-8 \lambda \tan ^{2} \alpha+4 \lambda^{2} \tan \alpha-4 \tan \alpha \tag{16}\\
& +3 \sec ^{2} \alpha \tan \alpha-\cot \alpha \sec ^{2} \alpha
\end{align*}
$$

and
(17) $4 f^{\prime \prime \prime}=-4 \lambda^{\prime \prime} \tan \alpha-6 \lambda \tan ^{2} \alpha+4 \lambda^{2} \tan \alpha-2 \tan \alpha+2 \lambda+2 \tan ^{3} \alpha$.

From these equations, we find

$$
\begin{equation*}
\lambda=\frac{1}{2}(\tan \alpha-\cot \alpha) \tag{18}
\end{equation*}
$$

or

$$
\begin{equation*}
\tan 2 \alpha=-\frac{1}{\lambda} . \tag{19}
\end{equation*}
$$

This gives the geometrical meaning of the conformal curvature λ. The equation (11) gives the value of $f^{\prime \prime \prime \prime}$.

The values of $f, f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime}$ and $f^{\prime \prime \prime \prime}$ being thus determined, the K and K^{\prime} become

$$
\begin{equation*}
K=\tan \underset{(1)}{\alpha}+\underset{\text { (3) }}{A}, \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
K^{\prime}=\frac{1}{2} \sec ^{2} \alpha \underset{(0)}{A}+\tan \alpha \underset{(2)}{A}, \tag{21}
\end{equation*}
$$

where

$$
\begin{equation*}
K^{2}=\sec ^{2} \alpha \quad \text { and } \quad K^{\prime 2}=-\tan \alpha \sec ^{2} \alpha, \tag{22}
\end{equation*}
$$

consequently the K^{\prime} is an imaginary circle, and the circles of the coaxal system cut orthogonally all the circles passing through two fixed points.

We shall find these points. They must have the form

$$
K+a K^{\prime}, \quad\left(K+a K^{\prime}\right)^{2}=0
$$

from which

$$
\begin{gathered}
K^{2}+2 a K K^{\prime}+a^{2} K^{\prime 2}=0, \\
\sec ^{2} \alpha+a^{2}\left(-\tan \alpha \sec ^{2} \alpha\right)=0, \\
a= \pm \frac{1}{\sqrt{\tan \alpha}}
\end{gathered}
$$

Consequently, denoting these points by P and Q, we have

$$
\begin{align*}
& P=\frac{\sec ^{2} \alpha}{2 \sqrt{\tan \alpha}} A+\tan \underset{(1)}{A}+\sqrt{\tan \alpha} \underset{(2)}{A}+\underset{(3)}{A}, \tag{23}\\
& Q=-\frac{\sec ^{2} \alpha}{2 \sqrt{\tan \alpha}} A+\tan \underset{(1)}{A}-\sqrt{\tan \alpha} \underset{(2)}{A}+\underset{(3)}{A} . \tag{24}
\end{align*}
$$

Finally from the equations

$$
\underset{(1)}{(A-\tan } \underset{(3)}{A}) K=0 \quad \text { and } \quad \underset{(1)}{(A-\tan \alpha \underset{(3)}{\alpha}) K^{\prime}=0, ~}
$$

we can conclude that the circle $\underset{(1)}{A-\tan } \underset{(3)}{A}$ passing through $P, Q, \underset{(0)}{A}$ and $\underset{\text { (2) }}{A}$ cut orthogonally all the circles of the coaxal system and that A is the intersection of this circle and the osculating circle of the (2) curve.

Thus the theorem is completely proved.
If we suppose that the conformal curvature λ is constant along the curve, and put
[Vol. 18,

$$
\lambda=\tan \varphi \quad\left(-\frac{\pi}{2} \leqq \varphi \leqq \frac{\pi}{2}\right)
$$

then the equation (19) shows us that our angle α is also constant along the curve and gives us

$$
\begin{aligned}
\tan 2 \alpha & =-\cot \varphi \\
& =\tan \left(\frac{\pi}{2}+\varphi\right)
\end{aligned}
$$

from which

$$
\alpha=\frac{\pi}{4}+\frac{\varphi}{2}
$$

Thus α being constant, we have

$$
\begin{aligned}
& \frac{d}{d \sigma} P=\frac{\sec ^{2} \alpha}{2 \sqrt{\tan \alpha}} A+\tan \alpha(\tan \varphi \underset{(0)}{A}+\underset{(2)}{A})+\sqrt{\tan \alpha}\left(\tan \varphi_{(1)}^{A}+\underset{(3)}{A}\right)+\underset{(0)}{A} \\
& =\frac{\sec ^{2} \alpha}{2 \sqrt{\tan \alpha}} A+\tan \alpha\left[\frac{\tan ^{2} \alpha-1}{2 \tan \alpha} \underset{\text { (0) }}{A}+\underset{(2)}{A}\right] \\
& +\sqrt{\tan \alpha}\left[\frac{\tan ^{2} \alpha-1}{2 \tan \alpha} \underset{(1)}{A}+\underset{(3)}{A}\right]+\underset{(0)}{A} \\
& =\frac{\sec ^{2} \alpha}{2} \underset{(0)}{A}+\frac{2 \tan ^{2} \alpha}{2 \sqrt{\tan \alpha}} A+\tan \alpha \underset{\text { (2) }}{A}+\sqrt{\tan \alpha} \underset{(3)}{A}=\sqrt{\tan \alpha} P, \\
& \frac{d}{d \sigma} Q=-\sqrt{\tan \alpha} Q,
\end{aligned}
$$

hence, the points P and Q are fixed, and the angle θ between the curve and the circle $\underset{(1)}{A}-\tan \underset{(3)}{A}$ is given by

$$
\sin \theta=\frac{\underset{(1)}{A(A-\tan \alpha A)}}{\sqrt{\left.{\underset{(1)}{(1)}}_{A}^{A}\right)}} \frac{\sqrt{(1)} \underset{(1)}{A-\tan } \underset{(3)}{\alpha A)(A-\tan \alpha A)}}{(1)}=\frac{1}{\sec \alpha}=\cos \alpha
$$

or

$$
\begin{equation*}
\theta=\frac{\pi}{2}-\alpha=\frac{\pi}{4}-\frac{\varphi}{2}, \tag{26}
\end{equation*}
$$

and we see that the curve is a generalized loxodrome as is already shown ${ }^{1)}$.

1) K. Yano and Y. Mutô: On the generalized loxodromes in the conformally connected manifold, loc. cit.

[^0]: 1) K. Yano and Y. Mutô: On the conformal arc length, Proc. 17 (1941), 318322 , On the generalized loxodromes in the conformally connected manifold, Proc. 17 (1941), 455-460.
