46. On an Extension of Löwner's Theorem.

By Masatsugu Tsujı.
Mathematical Institute, Tokyo Imperial University. (Comm. by T. Yosie, m.I.A., May 12, 1942.)

We will prove the following extension of Löwner's theorem.
Theorem. Let $w=f(z)$ be regular and $|f(z)|<1$ in $|z|<1$, $f(0)=0$ and $\lim _{r \rightarrow 1} f\left(r e^{i \theta}\right)=e^{i \psi}$ exists, when θ belongs to a set E and the ψ-set on $|w|=1$ be denoted by E^{*}. Then E and E^{*} are measurable and

$$
\begin{equation*}
m E \leqq m E^{*} \tag{1}
\end{equation*}
$$

If $0<m E<2 \pi$, then $m E<m E^{*}$.
Mr. $\dot{\mathrm{Y}}$. Kawakami ${ }^{1)}$ proved (1) under the condition that $f(z)$ is schlicht in $|z|<1$ and Messrs. S. Kametani and T. Ugaheri ${ }^{2)}$ proved that $m_{i} E \leqq m_{e} E^{*}$, where $m_{i} E$ and $m_{e} E$ denote the inner and outer measure of E.

Proof. Since $f\left(r e^{i \theta}\right) \quad(0<r<1)$ is continuous in $0 \leqq \theta \leqq 2 \pi$, by H. Hahn's theorem ${ }^{3)}$, the set e, where $\lim _{r \rightarrow 1} f\left(r e^{i \theta}\right)=\rho(\theta) e^{i \psi(\theta)}$ exists, is $F_{\sigma \grave{\delta}}$, so that $\rho(\theta)$ and $\psi(\theta)$ are Borel functions defined on a Borel set e and hence the sub-set E of e, where $\rho(\theta)=1$, is a Borel set. Consider on the (θ, ψ)-plane a set M, whose points are $(\theta, \psi(\theta))$, where $\theta \in E$. We will prove that M is a Borel set on the (θ, ψ)-plane.

Let $0=a_{0}<a_{1}<\cdots<a_{n-1}<a_{n}=2 \pi, a_{k}-a_{k-1}=\frac{1}{n}(1 \leqq k \leqq n)$ and $E_{k}=E\left(a_{k-1} \leqq \psi(\theta) \leqq a_{k}\right)$,
$\underline{M}_{k}=$ the set of points (θ, ψ), where $\theta \in E_{k}, \quad 0 \leqq \psi<a_{k-1}$,

$$
\underline{M}(n)=\sum_{k=1}^{n} \underline{M}_{k},
$$

and

$$
\bar{M}_{k}=\text { the set of points }(\theta, \psi), \text { where } \theta \in E_{k}, \quad 0 \leqq \psi \leqq a_{k}
$$

$$
\bar{M}(n)=\sum_{k=1}^{n} \bar{M}_{k}
$$

Then for $n \rightarrow \infty, \underline{M}(n) \rightarrow \underline{M}, \bar{M}(n) \rightarrow \bar{M}$, so that $M=\bar{M}-\underline{M}$. Since $\bar{M}(n), \underline{M}(n)$ are Borel sets, \bar{M} and \underline{M} and hence M is a Borel set. E^{*}, being the projection of M on the ψ-axis, is an analytic set, so that is measurable.

[^0]From this we can proceed similarly as Kametani-Ugaheri's proof. Let

$$
\begin{aligned}
& u(z)=u\left(r e^{i \theta}\right)=\frac{1}{2 \pi} \int_{E} \frac{1-r^{2}}{1-2 r \cos (\varphi-\theta)+r^{2}} d \varphi \\
& U(w)=U\left(\rho e^{i \psi}\right)=\frac{1}{2 \pi} \int_{E_{*}} \frac{1-\rho^{2}}{1-2 \rho \cos (\varphi-\psi)+\rho^{2}} d \varphi
\end{aligned}
$$

$v(z)=U(f(z))-u(z)$. Let O be an open set which contains $E^{*}, U_{1}(w)$ be the Poisson integral formed with O instead of E^{*} and $v_{1}(z)=U_{1}(f(z))-u(z)$, then $\lim _{r \rightarrow 1} v_{1}\left(r e^{i \theta}\right)=0$ almost everywhere on $E, \geqq 0$ almost enerywhere on E^{\prime} (the complementary set of E), so that $v_{1}(z) \geq 0$ in $|z|<1$. Making $m O \rightarrow m E^{*}$, we have $v(z) \geqq 0$ in $|z|<1$. Hence $v(0)=m E^{*}-m E \geqq 0$, or $m E^{*} \geqq m E$. If $0<m E<2 \pi$, then $0<m E \leqq m E^{*}$, so that

$$
\begin{equation*}
U(w)>0 \text { in }|w|<1 \tag{2}
\end{equation*}
$$

if in this case, $m E=m E^{*}$, then $v(0)=0$, so that $v(z) \equiv 0$, or

$$
\begin{equation*}
u(z) \equiv U(f(z)) \tag{3}
\end{equation*}
$$

Since $m E^{\prime}>0$, by Fatou's theorem, there exists θ_{0} in E^{\prime}, such that $\lim _{r \rightarrow 1} u\left(r e^{i \theta_{0}}\right)=0, \lim _{r \rightarrow 1} f\left(r e^{i \theta_{0}}\right)=w_{0} \quad\left(\left|w_{0}\right|<1\right)$. Hence we have from (3), $U\left(w_{0}\right)=0$, which contradicts (2). Hence if $0<m E<2 \pi$, then $m E<m E^{*}$.

[^0]: 1) Y. Kawakami ; On an extension of Löwner's lemma. Japan. Jour. of Math. 17 (1941).
 2) S. Kametani and T. Ugaheri : A remark on Kawakami's extension of Löwner's lemma. Proc. 18 (1942), 14.
 3) Hausdorf. Mengenlehre, p. 271.
