87. On the Function whose Imaginary Part on the Unit Circle Changes its Sign only Twice.

By Sôichi Kakeya, M.I.A.
Mathematical Institute, Faculty of Science, Tokyo Imperial University. (Comm. Oct. 12, 1942.)

I. We are going to consider the function

$$
\begin{equation*}
f(z)=\sum_{n=1}^{\infty} c_{n} z^{n}=c_{1} z+c_{2} z^{2}+\cdots \tag{1}
\end{equation*}
$$

which is regular within the unit circle and is continuous, for simplicity, to the boundary. Putting

$$
\begin{equation*}
z=r e^{i \theta}, \quad f(z)=u(r, \theta)+i v(r, \theta) \tag{2}
\end{equation*}
$$

we confine ourselves to the function which satisfies one of the following two conditions:
or

$$
\left.\left.\begin{array}{rl}
v(1, \theta)=v(\theta) & \geqq 0
\end{array} \text { for } \sigma_{1} \leqq \theta \leqq \sigma_{2} \quad \text { and } \sigma_{2} \leqq \theta \leqq 2 \pi\right\} \text { for } 0 \leqq \theta \leqq \sigma_{1} \text { and } \begin{array}{rl}
\\
& \leqq 0 \tag{4}\\
v(\theta) \leqq 0 & \text { for } \\
\sigma_{1} \leqq \theta \leqq \sigma_{2} & \\
& \geqq 0 \text { for } 0 \leqq \theta \leqq \sigma_{1} \quad \text { and } \sigma_{2} \leqq \theta \leqq 2 \pi
\end{array}\right\}
$$

namely the imaginary part of $f(z)$ on the unit circle $|z|=1$ may change its sign only at two points $e^{i \sigma_{1}}$ and $e^{i \sigma_{2}}$. ($0 \leqq \sigma_{1}<\sigma_{2} \leqq 2 \pi$).

It is easily to be seen that the function

$$
\begin{equation*}
g(z)=e^{-i \frac{\sigma_{1}+\sigma_{2}}{2}} \times \frac{\left(e^{i \sigma_{1}}-z\right)\left(e^{i \sigma_{2}}-z\right)}{z} \tag{5}
\end{equation*}
$$

becomes positive on the unit circle for $\sigma_{1}<\theta<\sigma_{2}$ and negative for the remaining arc. Hence the function

$$
\begin{align*}
F(z)=\varepsilon f(z) g(z) & =\sum_{n=0}^{\infty} C_{n} z^{n}=C_{0}+C_{1} z+C_{2} z^{2}+\cdots \\
& =U(r, \theta)+i V(r, \theta) \tag{6}
\end{align*}
$$

which is evidently continuous in the closed unit circle, must have the property

$$
\begin{equation*}
V(1, \theta)=V(\theta) \geqq 0 \quad \text { for } \quad 0 \leqq \theta \leqq 2 \pi \tag{7}
\end{equation*}
$$

if ε denotes +1 or -1 according as $f(z)$ satisfies the condition (3) or (4).

By the actual multiplication of $F(z)$ and

$$
\begin{equation*}
\frac{1}{g(x)}=e^{i \frac{\sigma_{1}+\sigma_{2}}{2}} \times \frac{z}{\left(e^{i \sigma_{1}}-z\right)\left(e^{i \sigma_{2}}-z\right)}=\frac{1}{2 i \sin \frac{\sigma_{2}-\sigma_{1}}{2}} \sum_{n=1}^{\infty}\left(e^{-i n \sigma_{1}}-e^{-i n \sigma_{2}}\right) z^{n} \tag{8}
\end{equation*}
$$

we obtain

$$
\begin{aligned}
& c_{n}=\frac{\varepsilon}{2 i \sin \frac{\sigma_{2}-\sigma_{1}}{2}}\left\{e^{-i \sigma_{1}}-e^{-i \sigma_{2}}\right) C_{n-1}+\left(e^{-2 i \sigma_{1}}-e^{-2 i \sigma_{2}}\right) C_{n-2} \\
&+\cdots+\left(e^{-n i \sigma_{1}}-e^{-n i \sigma_{2}}\right) C_{0} \\
& n=1,2,3, \ldots
\end{aligned}
$$

On the other hand, if we put

$$
\begin{equation*}
C_{n}=\alpha_{n}+i \beta_{n}, \quad n=0,1,2, \ldots \tag{10}
\end{equation*}
$$

we get, by the well known formulas

$$
\begin{align*}
& \beta_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} V(\theta) d \theta \tag{11}\\
& \alpha_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} \sin n \theta V(\theta) d \theta \quad n=1,2, \ldots \tag{12}\\
& \beta_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} \cos n \theta V(\theta) d \theta \quad n=1,2, \ldots \tag{13}
\end{align*}
$$

We now assume, for simplicity, that

$$
\begin{equation*}
c_{1}=1 \tag{14}
\end{equation*}
$$

which infers. from (9),

$$
\begin{equation*}
\mu_{0}=\varepsilon \cos \frac{\sigma_{1}+\sigma_{2}}{2}, \quad \beta_{0}=\varepsilon \sin \frac{\sigma_{1}+\sigma_{2}}{2} \tag{15}
\end{equation*}
$$

so that

$$
\begin{equation*}
\varepsilon \sin \frac{\sigma_{1}+\sigma_{2}}{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi} V(\theta) d \theta \tag{16}
\end{equation*}
$$

Substituting (12), (13), (15) and (16) to (9), it follows

$$
\begin{equation*}
c_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \varphi_{n}\left(\theta, \sigma_{1}, \sigma_{2}\right) V(\theta) d \theta, \quad n=1,2, \ldots \tag{17}
\end{equation*}
$$

where $\varphi_{n}\left(\theta, \sigma_{1}, \sigma_{2}\right)=\frac{\varepsilon}{\sin \frac{\sigma_{2}-\sigma_{1}}{2}}\left\{e^{-i\left(\sigma_{1}+\theta\right)} \times \frac{e^{-i(n-1) \sigma_{1}}-e^{-i(n-1) \theta}}{e^{-t \sigma_{1}}-e^{-i \theta}}\right.$

$$
\begin{equation*}
\left.-e^{-i\left(\sigma_{2}+\theta\right)} \times \frac{e^{-i(n-1) \sigma_{2}}-e^{-i(n-1) \theta}}{e^{-i \sigma_{2}}-e^{-i \theta}}+\frac{e^{-i n \sigma_{1}}-e^{-i n \sigma_{2}}}{1-e^{-i\left(\sigma_{1}+\sigma_{2}\right)}}\right\} \tag{18}
\end{equation*}
$$

From (7), (16) and (17), we see that the domain D_{n} within which c_{n} should lie is the smallest convex open domain containing the curve described by

$$
\begin{equation*}
\varepsilon \sin \frac{\sigma_{1}+\sigma_{2}}{2} \varphi_{n}\left(\theta, \sigma_{1}, \sigma_{2}\right), \quad 0 \leqq \theta \leqq 2 \pi^{1)} \tag{19}
\end{equation*}
$$

σ_{1}, σ_{2} being fixed. Especially the upper limit of $\left|c_{n}\right|$ is equal to the maximum of

1) See the author's paper "On some integral equations-II," Proc. Math. Phys. Soc. Tôkyô, Ser. 2, 8 (1915).

$$
\begin{equation*}
\left|\sin \frac{\sigma_{1}+\sigma_{2}}{2} \varphi_{n}\left(\theta, \sigma_{1}, \sigma_{2}\right)\right| \tag{20}
\end{equation*}
$$

with respect to θ. Let it be $G_{n}\left(\sigma_{1}, \sigma_{2}\right)$.
If we put

$$
\begin{equation*}
e^{-i \theta}=t \tag{21}
\end{equation*}
$$

the expression (19) becomes

$$
\begin{equation*}
\frac{1-e^{-i\left(\sigma_{1}+\sigma_{2}\right)}}{e^{-i \sigma_{1}}-e^{-i \sigma_{2}}}\left\{t e^{-i \sigma_{1}} \frac{t^{n-1}-e^{-i(n-1) \sigma_{1}}}{t-e^{-i \sigma_{1}}}-t e^{-i \sigma_{2}} \frac{t^{n-1}-e^{-i(n-1) \sigma_{2}}}{t-e^{-i \sigma_{2}}}+\frac{e^{-i n \sigma_{1}}-e^{-i n \sigma_{2}}}{1-e^{-i\left(\sigma_{1}+\sigma_{2}\right)}}\right\} \tag{22}
\end{equation*}
$$

and $G_{n}\left(\sigma_{1}, \sigma_{2}\right)$ is the maximum magnitude of (22) with respect to $|t|=1$.
Thus we get
Theorem 1. If the function

$$
\begin{equation*}
f(z)=z+c_{2} z^{2}+\cdots \tag{23}
\end{equation*}
$$

which is continuous in the closed unit circle, has the imaginary part $v(\theta)$ for $z=e^{i \theta}$, satisfying either the condition (3) or (4), then we must have

$$
\begin{equation*}
\left|c_{n}\right|<G_{n}\left(\sigma_{1}, \sigma_{2}\right) \tag{24}
\end{equation*}
$$

For example, if we assume

$$
\begin{equation*}
\sigma_{1}=0, \quad \sigma_{2}=\pi \tag{25}
\end{equation*}
$$

namely that both of $|z|=1$ and its image of $f(z)$ are divided into two corresponding arcs by the real axes, then we get

$$
\begin{align*}
G_{n}\left(\sigma_{1}, \sigma_{2}\right) & =G_{n}(0, \pi) \\
& =\underset{|t|=1}{\operatorname{Max}}\left|t \frac{t^{n-1}-1}{t-1}+t \frac{t^{n-1}-(-1)^{n-1}}{t-(-1)}+\frac{1-(-1)^{n}}{1-(-1)}\right|=n \tag{26}
\end{align*}
$$

This is a result once obtained by Mr . Ozaki ${ }^{1{ }^{1}}$.
If we let σ_{1} and σ_{2} vary themselves, then the maximum G_{n} of $G_{n}\left(\sigma_{1}, \sigma_{2}\right)$ is the absolute upper limit of $\left|c_{n}\right|$ in our case. Putting

$$
\begin{equation*}
e^{-i \sigma_{1}}=t x, \quad e^{-i \sigma_{2}}=t y \tag{27}
\end{equation*}
$$

we get, from (22),

$$
\begin{align*}
G_{n}= & \operatorname{Max}_{|x|,|y|,|t|=1}\left|\left\{x \frac{1-x^{n-1}}{1-x}-y \frac{1-y^{n-1}}{1-y}\right\} \frac{1-t^{2} x y}{x-y}+\frac{x^{n}-y^{n}}{x-y}\right| \\
= & \operatorname{Max} \mid 1+(x+y)+\left(x^{2}+x y+y^{2}\right)+\cdots+\left(x^{n-1}+x^{n-2} y+\cdots+y^{n-1}\right) \\
& \quad-t^{2} x y\left\{1+(x+y)+\cdots+\left(x^{n-2}+x^{n-3} y+\cdots+y^{n-2}\right)\right\} \mid \\
= & (1+2+3+\cdots+n)+(1+2+\cdots+(n-1))=n^{2} \tag{28}
\end{align*}
$$

Hence the following theorem has been proved.

[^0]Theorem 2. If the function (23), which is continuous in the closed unit circle, has the imaginary part $v(\theta)$ for $z=e^{i \theta}$ which may change its sign at most twice in the interval $0 \leqq \theta \leqq 2 \pi$, then we must have

$$
\begin{equation*}
\left|c_{n}\right|<n^{2} \tag{29}
\end{equation*}
$$

II. Some remarks are to be mentioned.

From (7) and (16), we must have

$$
\begin{equation*}
\varepsilon \sin \frac{\sigma_{1}+\sigma_{2}}{2} \geqq 0 \tag{30}
\end{equation*}
$$

The equality sign should occur only when $V(\theta) \equiv 0$, so that

$$
\begin{equation*}
\alpha_{0}= \pm 1, \quad \beta_{0}=0, \quad \alpha_{n}=\beta_{n}=0 \quad(n>0) \tag{31}
\end{equation*}
$$

namely $F(z)= \pm 1$ or

$$
\begin{equation*}
f(z) \equiv \frac{1}{g(z)} e^{i \frac{\sigma_{1}+\sigma_{2}}{2}} \quad\left(\frac{\sigma_{1}+\sigma_{2}}{2}=0 \text { or } \pi\right) \tag{32}
\end{equation*}
$$

In this case, $v(\theta)$ becomes discontinuous. Hence we see that, under our condition, it is necessary that

$$
\begin{equation*}
\varepsilon \sin \frac{\sigma_{1}+\sigma_{2}}{2}>0 \tag{33}
\end{equation*}
$$

which was tacitly assumed in the preceding discussion.
We have also assumed previously that $c_{1}=1$. But we can apply the result to the general case, under the only condition

$$
\begin{equation*}
c_{1} \neq 0 \tag{34}
\end{equation*}
$$

In this case, we are to put

$$
\begin{equation*}
c_{1}=\rho e^{i \omega}, \quad e^{i \omega} z=\xi \tag{35}
\end{equation*}
$$

so that the function (1) can be written in the form

$$
\begin{align*}
f(z) & =\rho e^{i \omega_{z}} z+c_{2} z^{2}+\cdots \\
& =\rho\left\{\xi+\frac{c_{2}}{\rho e^{2 i \omega}} \xi^{2}+\cdots\right\}=\rho \varphi(\xi) \tag{36}
\end{align*}
$$

Then $\varphi(\xi)$ is of the form (23) and its imaginary part on the unit circle may change its sign only at the points $e^{i\left(\sigma_{1}+\omega\right)}$ and $e^{i\left(\sigma_{2}+\omega\right)}$. Hence the theorem 1 shows that

$$
\begin{equation*}
\left|\frac{c_{n}}{\rho e^{n i \omega}}\right|=\left|\frac{c_{n}}{c_{1}}\right|<G_{n}\left(\sigma_{1}+\omega, \sigma_{2}+\omega\right) \tag{37}
\end{equation*}
$$

and the theorem 2 shows that

$$
\begin{equation*}
\left|\frac{c_{n}}{c_{1}}\right|<n^{2} \tag{38}
\end{equation*}
$$

By the direct multiplication of the series (5) and (23), we get

$$
\begin{gather*}
C_{0}=e^{i \frac{\sigma_{1}+\sigma_{2}}{2}}, \quad C_{1}=c_{2} e^{i \frac{\sigma_{1}+\sigma_{2}}{2}}-\left(e^{i \frac{\sigma_{1}-\sigma_{2}}{2}}+e^{i \frac{\sigma_{2}-\frac{-\sigma_{1}}{2}}{}}\right) \tag{39}\\
C_{n}=c_{n+1} e^{i \frac{\sigma_{1}+\sigma_{2}}{2}}-c_{n}\left(e^{i \frac{\sigma_{1}-\sigma_{2}}{2}}+e^{i \frac{\sigma_{2}-\frac{\sigma_{1}}{2}}{2}}\right)+c_{n-1} e^{-i \frac{\sigma_{1}+\sigma_{2}}{2}} \tag{40}\\
n=2,3, \ldots \quad\left(c_{1}=1\right)
\end{gather*}
$$

On the other hand (12), (13) and (16) show that the point $C_{n}=\alpha_{n}+i \beta_{n}$, ($n>0$) should lie within the circle described by

$$
\begin{equation*}
2 \varepsilon \sin \frac{\sigma_{1}+\sigma_{2}}{2}(\sin n \theta+i \cos n \theta) \quad 0 \leqq \theta \leqq 2 \pi \tag{41}
\end{equation*}
$$

So we get

$$
\begin{equation*}
\left|C_{n}\right|<2\left|\sin \frac{\sigma_{1}+\sigma_{2}}{2}\right|, \quad n=1,2, \ldots \tag{42}
\end{equation*}
$$

Substituting in the place of C_{n} the right hand member of (39) or (40), we obtain a set of inequalities satisfied by c_{2}, c_{3}, \ldots

The constant $G_{n}\left(\sigma_{1}, \sigma_{2}\right)$ of theorem 1 , so also n^{2} of theorem 2, is the smallest possible number satisfying the said inequality. For we can so take the imaginary part $v(\theta)$ of $f(z)$, hence the function $f(z)$ itself, that the imaginary part $V(\theta)$ of $F(z)$ should correspond to a constant as near to $G_{n}\left(\sigma_{1}, \sigma_{2}\right)$ as we please. Such $V(\theta)$ can be same for all n in the case of theorem 2 , so that any finite number of $\left|c_{n}\right|$'s can be, at the same time, as near to n^{2} 's respectively as we please.

[^0]: 1) Science Reports, Tokyo Bunrika Daigaku. 4 (1941), p. 79.
