PAPERS COMMUNICATED

116. On Locally Convex Topological Spaces.

By Noboru MATSUYAMA.

Mathematical Institute, Tohoku Imperial University, Sendai.

(Comm. by M. FUJIWARA, M.I.A., Dec. 12, 1942.)

Let L be a vector space and D a directed system. If there exists a real valued function $|x|_d$ on the domain $L \times D$ such that

- (1) $|x|_d \ge 0$; if $|x|_d = 0$ for all $d_{\varepsilon}D$ then $x = \theta$,
- (2) $|\alpha x|_d = |\alpha| \cdot |x|_d$ for any real α ,
- (3) for any given $e \in D$ there exists $d \in D$ such that $|x|_d \to 0$ and $|y|_d \to 0$ imply $|x+y|_e \to 0$,
- (4) d < e implies $|x|_d \leq |x|_e$,

then L is said to be a pseudo-normed linear space. It is proved by D. H. Hyers [1] that the pseudo-normed linear space is a linear topological space, which was defined by A. Kolmogoroff [2] and J. v. Neumann [3]. The triangular inequality

(3') $|x+y|_d \leq |x|_d + |y|_d$

is stronger than (3). If we take therefore the condition (3') instead of (3) in addition of (1), (2), (4), then the space L is said to be a locally convex linear topological space. In this paper we concern the locally convex linear topological space L and its conjugate spaces \overline{L} and $\overline{\overline{L}}$.

§ 1. Space \vec{L} . The family of the sets $u(d, \delta) \equiv (x; |x|_d < \delta)$ ($\delta > 0$) is said to be a fundamental system of the origin θ ; we denote it by $\{u(d, \delta); \delta > 0\}$.

Theorem 1. Referring the fundamental system $\{u(d, \delta); \delta > 0\}, L$ is a locally convex linear topological space.

For a linear functional f(x) on the domain L, if there exist some $d \in D$ and M(d) > 0 such that

(1) $|f(x)| \leq M(d) \cdot |x|_d$ for all $x \in L$,

then f(x) is said to be bounded.

Theorem 2. For linear functionals continuity is equivalent to boundedness.

For the linear continuous functional f(x) the set of all d with condition (1) is denoted by D_f , and for a given $d \in D$ the set of all f(x) with condition (1) is denoted by \overline{L}_d .

Theorem 3. D_f is a cofinal subsystem of D.

Proof. If d' and d'' are two elements of D_f , then $|f(x)| \leq M(d') \cdot |x|_{d'}$, and $|f(x)| \leq M(d') \cdot |x|_{d''}$ for all $x \in L$. Since D is a directed system, there exists a d such that d' < d and d'' < d. Consequently $|f(x)| \leq M(d') \cdot |x|_d$ and $|f(x)| \leq M(d') |x|_d$ for all $x \in L$. That is $d \in D_f$. For any d in D there exists d'' such as d'' > d and d'' > d', so that $|f(x)| \leq M(d') |x|_{d'} \leq M(d') |x|_{d''}$, which shows that D_f is a cofinal subsystem of D.

Theorem 4. (i) $|f|_d \ge 0$; and if $|f|_d = 0$ then $f(x) \equiv 0$,

- (ii) $|\alpha f|_d = |\alpha| |f|_d$,
- (iii) for every elements f, g, there exists a $d \in D$ such that $|f+g|_d \leq |f|_d + |g|_d$,
- (iv) for any $f(x) \in \overline{L}_d$, $d \le e$ implies $|f|_d \ge |f|_e$.

Proof. (i) and (ii) are evident by the condition (1), and the definition of $|f|_d$. Concerning (iii) and (iv), we have $|f(x)| \leq |f|_{d'} |x|_{d'}$ and $|g(x)| \leq |g|_{d''} |x|_{d''}$. If d' < d and d'' < d, then $|f(x)| \leq |f|_{d'} |x|_{d}$ and and $|g(x)| \leq |g|_{d''} |x|_{d}$. Consequently $|f|_{d'} \geq |f|_d$, $|g|_{d''} \geq |g|_d$, and then $|f(x)| \leq |f|_d \cdot |x|_d$; $|g(x)| \leq |g|_d \cdot |x|_d$. Above inequalities give $|f(x)+g(x)| \leq |f(x)|+|g(x)| \leq [|f|_d+|g|_d] |x|_d$. That is $|f+g|_d \leq |f|_d+|g|_d$, and d < e implies $|f|_d \geq |f|_e$.

Cor. 1. For any two linear continuous functionals f(x) and g(x), $0 \neq D_f \cap D_g < D_{f+g}$.

Cor. 2. For f(x) and g(x) in \overline{L}_d , then $|f+g|_d \leq |f|_d + |g|_d$.

From this last corrolary it is evident that \overline{L}_d is a normed space and we can easily show that \overline{L}_d is complete. Hence \overline{L}_d is a space of type (B). Now we shall denote by \overline{L} the family of all linear continuous functions on L. We have easily $\overline{L} = \overline{L}_d + \overline{L}_{d'} + \cdots$. Now let ||f|| be the g. l. b. $|f|_d$, then we have (i') $||f|| \ge 0$, (ii') ||af|| = |a||f||, and (iii') ||f+ $g|| \le ||f|| + ||g||$. But it is not true in general that ||f|| = 0 implies $f = \theta$. In this space L we can prove analogue of theorem in (B)-space. Among them we will state important ones without proof.

Theorem 5. For $x_0 \in L$ and $d \in D$ there is an $f_0 \in \overline{L}$ such that $|f_0|_d = 1$ and $f_0(x_0) = |x_0|_d$.

Theorem 6. If E_0 is a linear subset of L and f(x) is a linear continuous functional on E_0 , then there is an $f(x)\in\overline{L}$ such that $f(x)=f_0(x)$ for all $x\in E_0$ and $|f|_d=|f_0|_d$.

Theorem 7. Suppose E_0 is a linear subset of L, $y_0 \in L - E_0$ and for all $d \in D$ g. l. b. $|x-y_0|_d = k > 0$, then there is an $f(x) \in \overline{L}$ such that $f(E_0) = 0$ $f(y_0) = 1$ and $|f|_d = 1/k$.

Theorem 8. For an $E_0 < L$ and functional $f_0(x)$ defined in E_0 , necessary and sufficient conditions that for any M>0 and any $d\varepsilon D$ there exists an $f(x)\varepsilon \overline{L}$ such that $f(x)=f_0(x)$ for $x\varepsilon E_0$ and $|f|_d \leq M$, is that for any finite sequence $\{x_1, x_2, ..., x_r\}$ of E_0 and any real finite sequence $\{H_1, H_2, ..., H_r\}$, we have

$$\left|\sum_{i=1}^{r}H_{i}f_{0}(x_{i})\right| \leq M\left|\sum_{i=1}^{r}h_{i}x_{i}\right|.$$

2. On the space L. We will now consider a new topology in the space \overline{L} . A subset Γ of \overline{L} is called to be closed in \overline{L} if for any $d \in D$ $\Gamma \cap \overline{L}_d$ is closed in the space \overline{L}_d . A linear functional X(f) on \overline{L} is called to be continuous if it is continuous on the subspaces \overline{L}_d ; by the same way we can define the boundedness of X(f).

Theorem 9. For a linear functional continuity is equivalent to boundedness.

This theorem is evident. Since \overline{L}_d is a (B)-space, $|X|_d$ is a norm of X(f) in \overline{L}_d . Consequently $|X|_d \equiv 1$. u. b. $|X(f)|/|f|_d$. By $\overline{\overline{L}}$ we denote the family of all the linear continuous functionals on \overline{L} . The bar operation for \overline{L} is different from that for L.

Theorem 10. For any $x_0 \in L$ and any $d \in D$ there is an $X_0 \in \overline{L}$ such that $|x_0|_d = |X_0|_d$.

Proof. Put $X_0(f) = f(x_0)$, then the functional $X_0(f)$ is evidently linear on \overline{L} and moreover for every $\overline{L}_{d_1} | X_0(f) | = |f(x_0)| \leq |f|_d | x_0 |_d$. So that X_0 is linear continuous on \overline{L} , on the other hand by theorem 5, for any $d \in D$ there is an $f_0(x)$ such that $f_0(x_0) = |x_0|_d$ and $|f_0|_d = 1$. Consequently $| X_0(f_0) | = |f_0(x_0)| = |x_0|_d = |f_0|_d | x_0|_d$, and then $| X_0|_d = |x_0|_d$.

By this theorem we see that $L \subset \overline{L}$. Since for any $x_0 \in L$ and $d \in D$ we have $|x_0|_d = |X_0|_d$, therefore there occurs problem of regulality as in (B)-space. Here we will not enter it, but we will show by an example difficulties of this problem.

Example. Let L be a (B)-space and \overline{L} be its conjugate. If we define f > g by |f(x)| > |g(x)| for all $x \in L$, then \overline{L} is a vector lattice (this was proved in [7].). Consequently \overline{L} is adirected system by this ording. If we put $|x|_{f} \equiv |f(x)|$ for $x \in L$, then this pseudo-norm $|x|_{f}$ satisfies all conditions (1), (2), (3') and (4) in the introduction. Consequently L is a locally convex linear topological space with respect to such the norm $|x|_{f}$.

Further if we define $u(f_1, f_2, ..., f_k; \delta)$ by $u(f_1, f_2, ..., f_k; \delta) \equiv (x; |x|_{f_i} < \delta; i=1, 2, ..., k)$, then we can easily prove that this topology implies also the original topology of L. In this example we denote the former topology by $T^{(1)}$ and latter by $T^{(2)}$, then in general the topology $T^{(1)}$ is not stronger than $T^{(2)}$, and $T^{(2)}$ is not stronger than the norm topology of L. Thus the problem of regularity becomes the problem of regularity with respect to weak convergence topology of L.

Literature.

- 1) D. H. Hyers: Duke Math. Jour., 5 (1939).
- 2) A. Kolmogoroff: Studia Math., 5 (1934).
- 3) J. v. Wehausen: Duke Math. Jour., 4 (1938).
- 4) J. v. Neumann: Trans. Amer. Math. Jour., 37 (1938).
- 5) G. Birkoff: Ann. of Math., 38 (1937).
- 6) J. w. Tukey: Convergence and Uniformity in Topology (1940).
- 7) L. v. Kantorvitch: Rec. Math., 49 (1940).