13. On the Cluster Set of a Meromorphic Function.

By Masatsugu TSUJI.

Mathematical Institute, Tokyo Imperial University. (Comm. by YOSIE, M.I.A., Feb. 12, 1943.)

1. Let Δ be a bounded domain on the z-plane and z_0 be a nonisolated accessible boundary point on the boundary Γ of Δ . We denote the part of Δ , Γ in $|z-z_0| \leq r$ by Δ_r , Γ_r respectively and the part of $|z-z_0|=r$, which lies in Δ by θ_r . Let w=f(z) be one-valued and meromorphic in Δ and W_r be the set of values taken by f(z) in Δ_r and \overline{W}_r be its closure. Then

$$\lim_{r \to 0} \overline{W}_r = H_d(z_0) \tag{1}$$

is called the cluster set of f(z) in \varDelta at z_0 .

Let $\zeta(\pm z_0) \in \Gamma$ and $H_{\Delta}(\zeta)$ be the cluster set of f(z) at ζ and

 $V_r(\Gamma) = \sum H_d(\zeta)$, added for all $\zeta(\pm z_0)$ on Γ_r (2)

and $\overline{V}_r(\Gamma)$ be its closure. Then

$$\lim_{r \to 0} \overline{V}_r(\Gamma) = H_{\Gamma}(z_0) \tag{3}$$

is called the cluster set of f(z) on Γ at z_0 .

It is obvious that $H_{d}(z_{0}) > H_{\Gamma}(z_{0})$. Iversen¹⁾ proved that every boundary point of $H_{d}(z_{0})$ belongs to $H_{\Gamma}(z_{0})$.

Let $\zeta \in \Gamma$. If for any $\varepsilon > 0$, there exists a neighbourhood U of ζ , such that $|f(z)| \leq m + \varepsilon$ in U, then we will write: $|f(\zeta)| \leq m$. Then as an immediate consequence of the Iversen's theorem, we have²: Let f(z) be regular and bounded in Δ . If $\overline{\lim_{z \to z_0}} |f(z)| \leq m$, when z tends to z_0 on Γ , then $\overline{\lim_{z \to z_0}} |f(z)| \leq m$, when z tends to z_0 in Δ .

I will here extend the Iversen's theorem in the following way.

Let *E* be a closed set of capacity zero on Γ and $z_0 \in E$ and $U(\Gamma - E) \neq 0$ for any neighbourhood *U* of z_0 . We denote the part of *E* in $|z-z_0| \leq r$ by E_r . Let

$$V_r(\Gamma - E) = \sum H_A(\zeta)$$
, added for all $\zeta(\pm z_0)$ on $\Gamma_r - E_r$ (4)

and $\overline{V}_r(\Gamma - E)$ be its closure. Then

¹⁾ F. Iversen: Sur quelques propriétes des fonctions monogènes au voisinage d'un point singulier. Öfv. af Finska Vet-Soc. Förh. **58** (1916).

K. Kunugui: Sur un théorème de MM. Seidel-Beurling. Proc. 15 (1939),—Sur l'allure d'une fonction analytique uniforme au voisinage d'un point frontière de son domaine de définition. Jap. Jour. Math. 18 (1942).

K. Noshiro: On the theory of cluster sets of the analytic functions. Jour. Fac. Sci. Hokkaido Imp. Univ. 6 (1938),—On the singularities of analytic functions. Jap. Jour. Math. 17 (1940).

²⁾ K. Kunugui, l. c.

No. 2.]

On the Cluster Set of a Meromorphic Function.

$$\lim_{r \to 0} \overline{V}_r(\Gamma - E) = H_{\Gamma - E}(z_0) \tag{5}$$

is called the cluster set of f(z) on $\Gamma - E$ at z_0 .

We will prove

Theorem I. Every boundary point of $H_{\Delta}(z_0)$ belongs to $H_{\Gamma-E}(z_0)$.

Corollary. Let f(z) be regular and bounded in a bounded domain Δ , z_0 be a non-isolated accessible boundary point on the boundary Γ of Δ and E be a closed set of capacity zero on Γ and $z_0 \in E$ and $U(\Gamma - E) \neq 0$ for any neighbourhood U of z_0 . If $\overline{\lim_{z \to z_0}} |f(z)| \leq m$, when z tends to z_0

on $\Gamma - E$, then $\overline{\lim_{z \to z_0}} |f(z)| \leq m$, when z tends to z_0 in Δ .

2. We will prove some lemmas.

Lemma 1. Let f(z) be regular and bounded in a bounded domain Δ and $|f(z)| \leq m$ on the boundary Γ of Δ , except at points of a closed set E of capacity zero on Γ , then $|f(z)| \leq m$ in Δ .

Proof. Though this is a well known fact, we will prove it for the sake of completeness. By Evans' theorem¹, there exists a positive harmonic function v(z) in Δ , which is ∞ at every point of E.

Consider the domain Δ_k , which is bounded by Γ and the niveau curves: v(z) = const. = k and z' be any point of Δ . Then for a large k, z' is contained in Δ_k . Now for any $\varepsilon > 0$, $U(z) = \log |f(z)| - \log (m + \varepsilon) - \varepsilon v(z) < 0$ on the boundary of Δ_k for a sufficiently large k. Since U(z) is subharmonic in Δ_k , U(z') < 0. Since ε is arbitrary, we have $|f(z')| \leq m$, q. e. d.

Lemma 2. Let f(z) be regular and bounded in a bounded domain Δ and z_0 be a non-isolated accessible boundary point on the boundary Γ of Δ , which is regular for the Dirichlet problem for Δ and let E be a closed set of capacity zero on Γ and $z_0 \in E$.

If $\overline{\lim_{z \to z_0}} |f(z)| \leq m$, when z tends to z_0 on $\Gamma - E$, then $\overline{\lim_{z \to z_0}} |f(z)| \leq m$, when z tends to z_0 in Δ .

Proof. Let $|f(z)| \leq M$ in Δ . We may suppose m < M. We take ε so small that $m+\varepsilon \leq M$ and then we choose r so that $|f(z)| \leq m+\varepsilon$ on $\Gamma_{2r}-E_{2r}$ and U(z) be the solution of the Dirichlet problem for Δ with the continuous boundary values, such that $U(z) = \log (m+\varepsilon)$ on Γ_r , $U(z) = \frac{(2r-|z-z_0|)\log (m+\varepsilon)}{r} + \frac{(|z-z_0|-r)\log M}{r}$ on $\Gamma_{2r}-\Gamma_r$ and $U(z) = \log M$ on $\Gamma - \Gamma_{2r}$. Let ε be the set of irregular points on Γ , then ε is of capacity zero and Brelot²⁾ proved that ε is F_{σ} and that there exists a positive harmonic function $v_1(z)$ in Δ , which is ∞ at every point of ε . Consider as before, $\log |f(z)| - U(z) - \varepsilon v(z) - \varepsilon v_1(z)$, where v(z) is the Evans' function with respect to E. Since U(z) takes the given boundary values at the regular points on Γ , we have as before, $\log |f(z)| \leq U(z)$ in Δ .

61

¹⁾ Evans: Potentials and positively infinite singularities of harmonic functions. Monathefte f. Math. u. Phys. **43** (1936).

²⁾ Brelot: Problème de Dirichlet et majorantes harmoniques. Bull. Sci. Math. France (1939).

Since z_0 is a regular point, $\lim_{z \to z_0} U(z) = \log(m + \varepsilon)$, when z tends to z_0 in Δ . Since ε is arbitrary, we have $\overline{\lim_{z \to z_0}} |f(z)| \leq m$, when z tends to z_0 in Δ , q. e. d.

Hence if $\frac{1}{f(z)}$ is bounded in Δ and $\lim_{z\to z_0} |f(z)| \ge m$, when z tends to z_0 on $\Gamma - E$, then $\lim_{z\to z_0} |f(z)| \ge m$, when z tends to z_0 in Δ . We use Lemma 2 in this form in § 3.

3. Proof of Theorem I. Suppose that there exists a boundary point w_0 of $H_d(z_0)$, which does not belong to $H_{\Gamma-E}(z_0)$. We suppose $w_0=0$. We take r so small that $\overline{V}_r(\Gamma-E)$ lies outside $|w|=\rho_1>0$ and $|z-z_0|=r$ contains no points of E and zeros of f(z) on it. Then there exists $\rho_2>0$, such that $|f(z)| \ge \rho_2>0$ on θ_r . For, otherwise, there would exist points $z'_n \to z'$ on $|z-z_0|=r$, such that $f(z'_n)\to 0$. Since, by the hypothesis, z' does not belong to E and $\Gamma-E$, z' must belong to Δ , so that f(z) is meromorphic at z', hence f(z')=0, which contradicts the hypothesis. Hence there exists $\rho_2>0$, such that |f(z)| $\ge \rho_2>0$ on θ_r . Let $\rho=$ Min. (ρ_1, ρ_2) and consider the image of $|w| < \rho$ in Δ_r , which consists of connected domains $\{\Delta^{(n)}\}$.

By the choice of ρ , $\mathcal{A}^{(n)}$ contains no points of $|z-z_0|=r$ and $\Gamma-E$ on its boundary. $\{\mathcal{A}^{(n)}\}$ consist of two kind of domains; namely the ones of the first kind, which are bounded by closed curves, which contain no points of E and are mapped on the inside of $|w| < \rho$ and the others of the second kind, which contain points of E on their boundaries.

We will prove that there is one domain Δ_0 among $\{\Delta^{(n)}\}$, which contains z_0 on its boundary. If there is no such a domain, then, since w=0 belongs to $H_d(z_0)$, there are infinitely many $\Delta^{(n)}$, which contain points z_n converging to z_0 . We will show that such $\Delta^{(n)}$ converges to z_0 . For, otherwise, the boundary of $\Delta^{(n)}$ would certain a point z'_n on a circle: $|z-z_0|=r' (< r)$, which contain no points of E on it and we assume that $\lim_{n\to\infty} z'_n=z'$. Then z' does not belong to E. If $z' \in \Gamma - E$, then $H_{\Gamma-E}(z)$ contains points on $|w|=\rho$, which contradicts the hypothesis. Hence $z' \in \Delta$, so that f(z) is meromorphic at z' and in every neighbourhood of z', there are infinitely many niveau curves: $|f(z)|=\rho$, which is impossible. Hence $\Delta^{(n)}$ converges to z_0 . If $\frac{1}{f(z)}$ is bounded in $\Delta^{(n)}$, then since $\frac{1}{|f(z)|} = \frac{1}{\rho}$ on the boundary of $\Delta^{(n)}$, except at points of E, we have by Lemma 1, $\frac{1}{|f(z)|} \leq \frac{1}{\rho}$ or $|f(z)| \geq \rho$ in $\Delta^{(n)}$, which contradicts the definition of $\Delta^{(n)}$. Hence $\frac{1}{f(z)}$ is unbounded in $\Delta^{(n)}$. Similarly $\frac{1}{f(z)-w_1}$ is unbounded in $\Delta^{(n)}$ values, which are dense¹⁾ in $|w| \leq \rho$.

¹⁾ If $\Delta^{(n)}$ is a domain of the first kind, f(z) takes every value of $|w| < \rho$ in $\Delta^{(n)}$.

No. 2.]

Consequently, since $\Delta^{(n)}$ converges to z_0 , $|w| \leq \rho$ belongs to $H_d(z_0)$, which contradicts the hypothesis, that w=0 is a boundary point of $H_d(z_0)$. Hence there exists one domain Δ_0 among $\{\Delta^{(n)}\}$, which contains z_0 on its boundary. By the same argument as we have proved that $\Delta^{(n)}$ converges to z_0 , we see that z_0 is an accessible boundary point of Δ_0 .

Next consider the image of $|w| < \frac{\rho}{2}$ in Δ_0 . They consist of connected domains $\{\Delta_1^{(n)}\}$. We will show that there is one domain Δ_1 among $\{\Delta_1^{(n)}\}$, which contains z_0 on its boundary.

Suppose that there is no such a domain. Then, since, as before, there are no infinitely many $d_1^{(n)}$ converging to z_0 , there exists a neighbourhood U of z_0 in d_0 , which contains no points of $d_1^{(n)}$, so that $|f(z)| > \frac{\rho}{2}$ in U. Since $|f(z)| = \rho$ on the boundary of d_0 , except at points of E, we have by Lemma 2, $\lim_{z \to z_0} |f(z)| \ge \rho$, when z tends to z_0 in d_0 . Since $|f(z)| < \rho$ in d_0 , it follows that $\lim_{z \to z_0} |f(z)| = \rho$, when z tends to z_0 on a curve C in d_0 , so that $|f(z)| \to \rho$, when z tends to z_0 on a curve C in d_0 . We take off C from d, then z_0 is a regular point for the Dirichlet problem for d-C. Let $w_1\left(|w_1| \le \frac{\rho}{3}\right)$ be a point, which does not belong to $H_d(z_0)$, then $\frac{1}{f(z)-w_1}$ is bounded in the neighbourhood of z_0 and $\lim_{z \to z_0} |f(z)-w_1| \ge \rho - |w_1| \ge \frac{2}{3}\rho$, when z tends to z_0 on C and $\Gamma-E$. Hence by Lemma 2, $\lim_{z \to z_0} |f(z)-w_1| \ge \frac{2}{3}\rho$ and hence w=0 does not belong to $H_d(z_0)$, which contradicts the hypothesis. Hence there is a domain d_1 among $\{d_1^{(n)}\}$, which contains z_0 on its boundary.

Similarly considering the images of $|w| < \frac{\rho}{2^n}$ (n=1, 2, ...) in Δ_0 ,

we see that there exists a curve C ending at z_0 , such that $f(z) \rightarrow 0$ along C. We take off C from Δ , then z_0 is a regular point for the Dirichlet problem for $\Delta - C$. Then as before, we see that $|w-w_1| < \rho_0$ $(\rho_0 = |w_1|)$ does not belong to $H_d(z_0)$. We take a point w_2 in $|w-w_1| < \rho_0$, such that $|w_2| = \rho_0$ and see similarly that $|w-w_2| < \rho_0$ does not belong to $H_d(z_0)$. Continuating similarly we conclude that $|w| = \rho_0$ does not belong to $H_d(z_0)$. But we see easily that $H_d(z_0)$ contains a continuum, which connects w=0 and $\Gamma - E$, so that $H_d(z_0)$ contains points on $|w| = \rho_0$, which contradicts the above result. Hence there is no boundary point of $H_d(z_0)$, which does not belong to $H_{\Gamma-E}(z_0)$, q. e. d.

4. By Theorem I, $D=H_{d}(z_{0})-H_{\Gamma-E}(z_{0})$ is an open set, which, in general, consists of enumerably infinite number of connected domains $\{D_{n}\}$.

M. TSUJI.

K. Kunugui¹⁾ proved that f(z) takes any value in D_n , except at most two, infinitely many times in the neighbourhood of z_0 , when E consists of only one point z_0 . We will prove

Theorem II. f(z) takes any value in D, except values of capacity zero, infinitely many times in the neighbourhood of z_0 .

Proof. Let $D_1 < D$ be a closed domain. Then we take δ so small that $\overline{V}_{\delta}(\Gamma - E)$ has a positive distance $\geq \rho_1 > 0$ from D_1 . Let $w_0 = 0$ be a point of D_1 , which is taken by f(z) finite times in the neighbourhood of z_0 .

Then we take $\delta_1 < \delta$ so small that $f(z) \neq 0$ in \mathcal{A}_{δ_1} and on θ_{δ_1} and $|z-z_0| = \delta_1$ contains no points of E on it. Then as in §3, $|f(z)| \ge \rho_2 > 0$ on θ_{δ_1} . Let $\rho = \text{Min.} (\rho_1, \rho_2)$ and \mathcal{A}_0 be one of the domains, which are the images of $|w| < \rho$ in \mathcal{A}_{δ_1} . Then \mathcal{A}_0 contains no points of $|z-z_0| = \delta_1$ and $\Gamma - E$ on its boundary. Since $f(z) \neq 0$ in \mathcal{A}_{δ_1} , \mathcal{A}_0 contains points of E on its boundary. Considering the images of $|w| < \frac{\rho}{2^n}$ (n=1, 2, ...) in \mathcal{A}_0 , we see that there exists a curve C in \mathcal{A}_0 ending at a point ζ_0 on E, such that $f(z) \to 0$ along C. Let $z-\zeta_0 = re^{i\theta}$ and $\mathcal{A}_0(r)$ be the part of \mathcal{A}_0 , which lies between $|z-\zeta_0|=r_0$ and $|z-\zeta_0|=r$ $(r < r_0)$ and $\theta_0(r)$ be the part of $|z-\zeta_0|=r$ which lies in \mathcal{A}_0 . Let K be the Riemann sphere of diameter 1, which touches the w-plane at w=0 and S(r), L(r) be the area and the length of the image of $\mathcal{A}_0(r)$, $\theta_0(r)$ on K re-

spectively. Then

$$S(r) = \int_{r}^{r_0} \int_{\theta_0(r)} \frac{|f'(z)|^2}{(1+|f(z)|^2)^2} r dd\theta , \qquad L(r) = \int_{\theta_0(r)} \frac{|f'(z)|}{1+|f(z)|^2} r d\theta ,$$

so that

$$[L(r)]^2 \leq 2\pi r^2 \int_{ heta_0(r)} rac{|f'(z)|^2}{(1+|f(z)|^2)^2} d heta = -2\pi r rac{dS(r)}{dr}$$

Since $\theta_0(r)$ meets C and the boundary of Δ_0 , we see $L(r) \ge d > 0$. Hence $d^2 \log \frac{r_0}{r} \le 2\pi S(r)$, so that $\lim_{r \to 0} S(r) = \infty$. Now f(z) is regular in Δ_0 , $|f(z)| < \rho$ in Δ_0 , $|f(z)| = \rho$ on the boundary of Δ_0 , except at points of E and $\lim_{t \to 0} S(r) = \infty$.

Hence by a theorem²⁾ proved by the author, f(z) takes any value in $|w| < \rho$, except values of capacity zero, infinitely many times in Δ_0 a fortiori in Δ_{δ} . Let e_1 be the set of values in D_1 , which are taken by f(z) finite times in the neighbourhood of z_0 . Then by the above result, at every point w_0 of e_1 , there exists a neighbourhood $U(w_0)$, such that any value in $U(w_0)$, except values of capacity zero, is taken by f(z) infinitely many times in Δ_{δ} . Since by Lindelöf's covering theorem, we can cover e_1 by an enumerably infinite such neighbourhoods and a sum of enumerably infinite number of sets of capacity zero is also of capacity zero, we see that any value in D_1 , except values of capacity zero, is taken by f(z) infinitely many times in Δ_{δ} .

¹⁾ K. Kunugui: Sur un problème de M. A. Beurling. Proc. 16 (1940).

²⁾ M. Tsuji: On the behaviour of a meromorphic function in the neighbourhood of a closed set of capacity zero. Proc. 18 (1942).

We take $\delta_1 > \delta_2 > \cdots > \delta_n \to 0$ for δ and the corresponding exceptional set be $e^{(n)}$, then $e_1 = \sum_{n=1}^{\infty} e^{(n)}$ is of capacity zero and any value in D_1 , except e_1 , is taken by f(z) infinitely many times in the neighbourhood of z_0 . Next we approximate D by closed domains $D_1 < D_2 < \cdots < D_n \to D$ and the corresponding exceptional set be e_n and $e = \sum_{n=1}^{\infty} e_n$. Then e is of capacity zero and any value in D, except e, is taken by f(z) infinitely many times in the neighbourhood of z_0 .