# 13. On the Cluster Set of a Meromorphic Function. 

By Masatsugu Tsuji.<br>Mathematical Institute, Tokyo Imperial University.<br>(Comm. by Yosie, m.I.A., Feb. 12, 1943.)

1. Let $\Delta$ be a bounded domain on the $z$-plane and $z_{0}$ be a nonisolated accessible boundary point on the boundary $\Gamma$ of $\Delta$. We denote the part of $\Delta, \Gamma$ in $\left|z-z_{0}\right| \leqq r$ by $\Delta_{r}, \Gamma_{r}$ respectively and the part of $\left|z-z_{0}\right|=r$, which lies in $\Delta$ by $\theta_{r}$. Let $w=f(z)$ be one-valued and meromorphic in $\Delta$ and $W_{r}$ be the set of values taken by $f(z)$ in $\Delta_{r}$ and $\bar{W}_{r}$ be its closure. Then

$$
\begin{equation*}
\lim _{r \rightarrow 0} \bar{W}_{r}=H_{\Delta}\left(z_{0}\right) \tag{1}
\end{equation*}
$$

is called the cluster set of $f(z)$ in $\Delta$ at $z_{0}$.
Let $\zeta\left(\neq z_{0}\right) \in \Gamma$ and $H_{\Delta}(\zeta)$ be the cluster set of $f(z)$ at $\zeta$ and

$$
\begin{equation*}
V_{r}(\Gamma)=\sum H_{\Delta}(\zeta), \quad \text { added for all } \zeta\left(\neq z_{0}\right) \text { on } \Gamma_{r} \tag{2}
\end{equation*}
$$

and $\bar{V}_{r}(\Gamma)$ be its closure. Then

$$
\begin{equation*}
\lim _{r \rightarrow 0} \bar{V}_{r}(\Gamma)=H_{\Gamma}\left(z_{0}\right) \tag{3}
\end{equation*}
$$

is called the cluster set of $f(z)$ on $\Gamma$ at $z_{0}$.
It is obvious that $H_{A}\left(z_{0}\right)>H_{\Gamma}\left(z_{0}\right)$. Iversen ${ }^{1)}$ proved that every boundary point of $H_{\Delta}\left(z_{0}\right)$ belongs to $H_{\Gamma}\left(z_{0}\right)$.

Let $\zeta \in \Gamma$. If for any $\varepsilon>0$, there exists a neighbourhood $U$ of $\zeta$, such that $|f(z)| \leqq m+\varepsilon$ in $U$, then we will write: $|f(\zeta)| \leqq m$. Then as an immediate consequence of the Iversen's theorem, we have ${ }^{2}$ : Let $f(z)$ be regular and bounded in $\Delta$. If $\lim _{z \rightarrow z_{0}}|f(z)| \leqq m$, when $z$ tends to $z_{0}$ on $\Gamma$, then $\varlimsup_{z \rightarrow z_{0}}|f(z)| \leqq m$, when $z$ tends to $z_{0}$ in $\Delta_{2}$

I will here extend the Iversen's theorem in the following way.
Let $E$ be a closed set of capacity zero on $\Gamma$ and $z_{0} \in E$ and $U(\Gamma-E) \neq 0$ for any neighbourhood $U$ of $z_{0}$. We denote the part of $E$ in $\left|z-z_{0}\right| \leqq r$ by $E_{r}$. Let

$$
\begin{equation*}
V_{r}(\Gamma-E)=\sum H_{\Delta}(\zeta), \quad \text { added for all } \zeta\left(\neq z_{0}\right) \text { on } \Gamma_{r}-E_{r} \tag{4}
\end{equation*}
$$

and $\bar{V}_{r}(\Gamma-E)$ be its closure. Then

[^0]\[

$$
\begin{equation*}
\lim _{r \rightarrow 0} \bar{V}_{r}\left(\Gamma^{\prime}-E\right)=H_{\Gamma-E}\left(z_{0}\right) \tag{5}
\end{equation*}
$$

\]

is called the cluster set of $f(z)$ on $\Gamma-E$ at $z_{0}$.
We will prove
Theorem I. Every boundary point of $H_{\Delta}\left(z_{0}\right)$ belongs to $H_{\Gamma-E}\left(z_{0}\right)$.
Corollary. Let $f(z)$ be regular and bounded in a bounded domain 4 , $z_{0}$ be a non-isolated accessible boundary point on the boundary $\Gamma$ of $\Delta$ and $E$ be a closed set of capacity zero on $\Gamma$ and $z_{0} \in E$ and $U(\Gamma-E) \neq 0$ for any neighbourhood $U$ of $z_{0}$. If $\varlimsup_{z \rightarrow z_{0}}|f(z)| \leqq m$, when $z$ tends to $z_{0}$ on $\Gamma-E$, then $\varlimsup_{z \rightarrow z_{0}}|f(z)| \leqq m$, when $z$ tends to $z_{0}$ in $\Delta$.
2. We will prove some lemmas.

Lemma 1. Let $f(z)$ be regular and bounded in a bounded domain $\Delta$ and $|f(z)| \leqq m$ on the boundary $\Gamma$ of $\Delta$, except at points of a closed set $E$ of capacity zero on $\Gamma$, then $|f(z)| \leqq m$ in $\Delta$.

Proof. Though this is a well known fact, we will prove it for the sake of completeness. By Evans' theorem ${ }^{1)}$, there exists a positive harmonic function $v(z)$ in $\Delta$, which is $\infty$ at every point of $E$.

Consider the domain $\Delta_{k}$, which is bounded by $\Gamma$ and the niveau curves: $v(z)=$ const. $=k$ and $z^{\prime}$ be any point of $\Delta$. Then for a large $k, z^{\prime}$ is contained in $\Delta_{k}$. Now for any $\varepsilon>0, U(z)=\log |f(z)|-\log (m+\varepsilon)$ $-\varepsilon v(z)<0$ on the boundary of $\Delta_{k}$ for a sufficiently large $k$. Since $U(z)$ is subharmonic in $\Delta_{k}, U\left(z^{\prime}\right)<0$. Since $\varepsilon$ is arbitrary, we have $\left|f\left(z^{\prime}\right)\right| \leqq m$, q. e.d.

Lemma 2. Let $f(z)$ be regular and bounded in a bounded domain $\Delta$ and $z_{0}$ be a non-isolated accessible boundary point on the boundary $\Gamma$ of $\Delta$, which is regular for the Dirichlet problem for $\Delta$ and let $E$ be a closed set of capacity zero on $\Gamma$ and $z_{0} \in E$.

If $\varlimsup_{z \rightarrow z_{0}}|f(z)| \leqq m$, when $z$ tends to $z_{0}$ on $\Gamma-E$, then $\varlimsup_{z \rightarrow z_{0}}|f(z)| \leqq m$, when $z$ tends to $z_{0}$ in $\Delta$.

Proof. Let $|f(z)| \leqq M$ in $\Delta$. We may suppose $m<M$. We take $\varepsilon$ so small that $m+\varepsilon \leqq M$ and then we choose $r$ so that $|f(z)| \leqq m+\varepsilon$ on $\Gamma_{2 r}-E_{2 r}$ and $U(z)$ be the solution of the Dirichlet problem for $\Delta$ with the continuous boundary values, such that $U(z)=\log (m+\varepsilon)$ on $\Gamma_{r}$, $U(z)=\frac{\left(2 r-\left|z-z_{0}\right|\right) \log (m+\varepsilon)}{r}+\frac{\left(\left|z-z_{0}\right|-r\right) \log M}{r} \quad$ on $\quad \Gamma_{2 r}-\Gamma_{r}$ and $U(z)=\log M$ on $\Gamma-\Gamma_{2 r}$. Let $e$ be the set of irregular points on $\Gamma$, then $e$ is of capacity zero and Brelot ${ }^{2}$ proved that $e$ is $F_{\sigma}$ and that there exists a positive harmonic function $v_{1}(z)$ in $\Delta$, which is $\infty$ at every point of $e$. Consider as before, $\log |f(z)|-U(z)-\varepsilon v(z)-\varepsilon v_{1}(z)$, where $v(z)$ is the Evans' function with respect to $E$. Since $U(z)$ takes the given boundary values at the regular points on $\Gamma$, we have as before, $\log |f(z)| \leqq U(z)$ in $\Delta$.

[^1]Since $z_{0}$ is a regular point, $\lim _{z \rightarrow z_{0}} U(z)=\log (m+\varepsilon)$, when $z$ tends to $z_{0}$ in $\Delta$. Since $\varepsilon$ is arbitrary, we have $\varlimsup_{z \rightarrow z_{0}}|f(z)| \leqq m$, when $z$ tends to $z_{0}$ in $\Delta$, q. e.d.

Hence if $\frac{1}{f(z)}$ is bounded in $\Delta$ and $\lim _{z \rightarrow z_{0}}|f(z)| \geqq m$, when $z$ tends to $z_{0}$ on $\Gamma-E$, then $\lim _{z \rightarrow z_{0}}|f(z)| \geqq m$, when $z$ tends to $z_{0}$ in $\Delta$. We use Lemma 2 in this form in $\S 3$.
3. Proof of Theorem 1. Suppose that there exists a boundary point $w_{0}$ of $H_{\Delta}\left(z_{0}\right)$, which does not belong to $H_{\Gamma-E}\left(z_{0}\right)$. We suppose $w_{0}=0$. We take $r$ so small that $\bar{V}_{r}(\Gamma-E)$ lies outside $|w|=\rho_{1}>0$ and $\left|z-z_{0}\right|=r$ contains no points of $E$ and zeros of $f(z)$ on it. Then there exists $\rho_{2}>0$, such that $|f(z)| \geqq \rho_{2}>0$ on $\theta_{r}$. For, otherwise, there would exist points $z_{n}^{\prime} \rightarrow z^{\prime}$ on $\left|z-z_{0}\right|=r$, such that $f\left(z_{n}^{\prime}\right) \rightarrow 0$. Since, by the hypothesis, $z^{\prime}$ does not belong to $E$ and $\Gamma-E, z^{\prime}$ must belong to $\Delta$, so that $f(z)$ is meromorphic at $z^{\prime}$, hence $f\left(z^{\prime}\right)=0$, which contradicts the hypothesis. Hence there exists $\rho_{2}>0$, such that $|f(z)|$ $\geqq \rho_{2}>0$ on $\theta_{r}$. Let $\rho=\operatorname{Min}$. $\left(\rho_{1}, \rho_{2}\right)$ and consider the image of $|w|<\rho$ in $\Delta_{r}$, which consists of connected domains $\left\{\Delta^{(n)}\right\}$.

By the choice of $\rho, \Delta^{(n)}$ contains no points of $\left|z-z_{0}\right|=r$ and $\Gamma-E$ on its boundary. $\left\{\Delta^{(n)}\right\}$ consist of two kind of domains; namely the ones of the first kind, which are bounded by closed curves, which contain no points of $E$ and are mapped on the inside of $|w|<\rho$ and the others of the second kind, which contain points of $E$ on their boundaries.

We will prove that there is one domain $\Delta_{0}$ among $\left\{\Delta^{(n)}\right\}$, which contains $z_{0}$ on its boundary. If there is no such a domain, then, since $w=0$ belongs to $H_{\Delta}\left(z_{0}\right)$, there are infinitely many $\Delta^{(n)}$, which contain points $z_{n}$ converging to $z_{0}$. We will show that such $\Delta^{(n)}$ converges to $z_{0}$. For, otherwise, the boundary of $\Delta^{(n)}$ would certain a point $z_{n}^{\prime}$ on a circle: $\left|z-z_{0}\right|=r^{\prime}(<r)$, which contain no points of $E$ on it and we assume that $\lim _{n \rightarrow \infty} z_{n}^{\prime}=z^{\prime}$. Then $z^{\prime}$ does not belong to $E$. If $z^{\prime} \in \Gamma-E$, then $H_{\Gamma-E}(z)$ contains points on $|w|=\rho$, which contradicts the hypothesis. Hence $z^{\prime} \in \Delta$, so that $f(z)$ is meromorphic at $z^{\prime}$ and in every neighbourhood of $z^{\prime}$, there are infinitely many niveau curves: $|f(z)|=\rho$, which is impossible. Hence $\Delta^{(n)}$ converges to $z_{0}$. If $\frac{1}{f(z)}$ is bounded in $\Delta^{(n)}$, then since $\frac{1}{|f(z)|}=\frac{1}{\rho}$ on the boundary of $\Delta^{(n)}$, except at points of $E$, we have by Lemma $1, \frac{1}{|f(z)|} \leqq \frac{1}{\rho}$ or $|f(z)| \geqq \rho$ in $\Delta^{(n)}$, which contradicts the definition of $\Delta^{(n)}$. Hence $\frac{1}{f(z)}$ is unbounded in $\Delta^{(n)}$. Similarly $\frac{1}{f(z)-w_{1}}$ is unbounded in $\Delta^{(n)}$, where $w_{1}$ is any point of $|w|<\rho$. Hence $f(z)$ takes in $\Delta^{(n)}$ values, which are dense ${ }^{1)}$ in $|w| \leqq \rho$.

[^2]Consequently, since $\Delta^{(n)}$ converges to $z_{0},|w| \leqq \rho$ belongs to $H_{\Delta}\left(z_{0}\right)$, which contradicts the hypothesis, that $w=0$ is a boundary point of $H_{\Delta}\left(z_{0}\right)$. Hence there exists one domain $\Delta_{0}$ among $\left\{\Delta^{(n)}\right\}$, which contains $z_{0}$ on its boundary. By the same argument as we have proved that $\Delta^{(n)}$ converges to $z_{0}$, we see that $z_{0}$ is an accessible boundary point of $\Delta_{0}$.

Next consider the image of $|w|<\frac{\rho}{2}$ in $\Delta_{0}$. They consist of connected domains $\left\{\Delta_{1}^{(n)}\right\}$. We will show that there is one domain $\Delta_{1}$ among $\left\{\Delta_{1}^{(n)}\right\}$, which contains $z_{0}$ on its boundary.

Suppose that there is no such a domain. Then, since, as before, there are no infinitely many $\Delta_{1}^{(n)}$ converging to $z_{0}$, there exists a neighbourhood $U$ of $z_{0}$ in $\Delta_{0}$, which contains no points of $\Delta_{1}^{(n)}$, so that $|f(z)|>\frac{\rho}{2}$ in $U$. Since $|f(z)|=\rho$ on the boundary of $\Delta_{0}$, except at points of $E$, we have by Lemma 2 , $\lim _{z \rightarrow z_{0}}|f(z)| \geqq \rho$, when $z$ tends to $z_{0}$ in $\Delta_{0}$. Since $|f(z)|<\rho$ in $\Delta_{0}$, it follows that $\lim _{z \rightarrow z_{0}}|f(z)|=\rho$, when $z$ tends to $z_{0}$ in $\Delta_{0}$, so that $|f(z)| \rightarrow \rho$, when $z$ tends to $z_{0}$ on a curve $C$ in $\Delta_{\theta}$. We take off $C$ from $\Delta$, then $z_{0}$ is a regular point for the Dirichlet problem for $\Delta-C$. Let $w_{1}\left(\left|w_{1}\right| \leqq \frac{\rho}{3}\right)$ be a point, which does not belong to $H_{\Delta}\left(z_{0}\right)$, then $\frac{1}{f(z)-w_{1}}$ is bounded in the neighbourhood of $z_{0}$ and $\lim _{z \rightarrow z_{0}}\left|f(z)-w_{1}\right| \geqq \rho-\left|w_{1}\right| \geqq \frac{2}{3} \rho$, when $z$ tends to $z_{0}$ on $C$ and $\Gamma-E$. Hence by Lemma 2, $\lim _{z \rightarrow z_{0}}\left|f(z)-w_{1}\right| \geqq \frac{2}{3} \rho$, when $z$ tends to $z_{0}$ in $\Delta-C$ and hence in $\Delta$, so that $\left|w-w_{1}\right|<\frac{2}{3} \rho$ and hence $w=0$ does not belong to $H_{\Delta}\left(z_{0}\right)$, which contradicts the hypothesis. Hence there is a domain $\Delta_{1}$ among $\left\{\Delta_{1}^{(n)}\right\}$, which contains $z_{0}$ on its boundary.

Similarly considering the images of $|w|<\frac{\rho}{2^{n}}(n=1,2, \ldots)$ in $\Delta_{0}$, we see that there exists a curve $C$ ending at $z_{0}$, such that $f(z) \rightarrow 0$ along $C$. We take off $C$ from $\Delta$, then $z_{0}$ is a regular point for the Dirichlet problem for $\Delta-C$. Then as before, we see that $\left|w-w_{1}\right|<\rho_{0}$ ( $\rho_{0}=\left|w_{1}\right|$ ) does not belong to $H_{\Delta}\left(z_{0}\right)$. We take a point $w_{2}$ in $\left|w-w_{1}\right|<\rho_{0}$, such that $\left|w_{2}\right|=\rho_{0}$ and see similarly that $\left|w-w_{2}\right|<\rho_{0}$ does not belong to $H_{\Delta}\left(z_{0}\right)$. Continuating similarly we conclude that $|w|=\rho_{0}$ does not belong to $H_{\Delta}\left(z_{0}\right)$. But we see easily that $H_{\Delta}\left(z_{0}\right)$ contains a continuum, which connects $w=0$ and $\Gamma-E$, so that $H_{4}\left(z_{0}\right)$ contains points on $|w|=\rho_{0}$, which contradicts the above result. Hence there is no boundary point of $H_{\Delta}\left(z_{0}\right)$, which does not belong to $H_{\Gamma-E}\left(z_{0}\right)$, q.e.d.
4. By Theorem I, $D=H_{\Delta}\left(z_{0}\right)-H_{\Gamma-E}\left(z_{0}\right)$ is an open set, which, in general, consists of enumerably infinite number of connected domains $\left\{D_{n}\right\}$.
K. Kunugui ${ }^{1}$ proved that $f(z)$ takes any value in $D_{n}$, except at most two, infinitely many times in the neighbourhood of $z_{0}$, when $\boldsymbol{E}$ consists of only one point $z_{0}$. We will prove

Theorem II. $f(z)$ takes any value in D, except values of capacity zero, infinitely many times in the neighbourhood of $z_{0}$.

Proof. Let $D_{1} \subset D$ be a closed domain. Then we take $\delta$ so small that $\bar{V}_{\delta}(\Gamma-E)$ has a positive distance $\geqq \rho_{1}>0$ from $D_{1}$. Let $w_{0}=0$ be a point of $D_{1}$, which is taken by $f(z)$ finite times in the neighbourhood of $z_{0}$.

Then we take $\delta_{1}<\delta$ so small that $f(z) \neq 0$ in $\Delta_{\delta_{1}}$ and on $\theta_{\delta_{1}}$ and $\left|z-z_{0}\right|=\delta_{1}$ contains no points of $E$ on it. Then as in $\S 3,|f(z)| \geqq \rho_{2}>0$ on $\theta_{\delta_{1}}$. Let $\rho=\operatorname{Min}$. $\left(\rho_{1}, \rho_{2}\right)$ and $\Delta_{0}$ be one of the domains, which are the images of $|w|<\rho$ in $\Delta_{\delta_{1}}$. Then $\Delta_{0}$ contains no points of $\left|z-z_{0}\right|=\delta_{1}$ and $\Gamma-E$ on its boundary. Since $f(z) \neq 0$ in $\Delta_{\delta_{1}}, \Delta_{0}$ contains points of $E$ on its boundary. Considering the images of $|w|<\frac{\rho}{2^{n}}(n=1,2, \ldots)$ in $\Delta_{0}$, we see that there exists a curve $C$ in $\Delta_{0}$ ending at a point $\zeta_{0}$ on $E$, such that $f(z) \rightarrow 0$ along $C$. Let $z-\zeta_{0}=r e^{i \theta}$ and $\Delta_{0}(r)$ be the part of $\Delta_{0}$, which lies between $\left|z-\zeta_{0}\right|=r_{0}$ and $\left|z-\zeta_{0}\right|=r\left(r<r_{0}\right)$ and $\theta_{0}(r)$ be the part of $\left|z-\zeta_{0}\right|=r$ which lies in $\Delta_{0}$. Let $K$ be the Riemann sphere of diameter 1 , which touches the $w$-plane at $w=0$ and $S(r)$, $L(r)$ be the area and the length of the image of $\Delta_{0}(r), \theta_{0}(r)$ on $K$ respectively. Then

$$
S(r)=\int_{r}^{r_{0}} \int_{\theta_{0}(r)} \frac{\left|f^{\prime}(z)\right|^{2}}{\left(1+|f(z)|^{2}\right)^{2}} r d d \theta, \quad L(r)=\int_{\theta_{0}(r)} \frac{\left|f^{\prime}(z)\right|}{1+|f(z)|^{2}} r d \theta,
$$

so that

$$
[L(r)]^{2} \leqq 2 \pi r^{2} \int_{\theta_{0}(r)} \frac{\left|f^{\prime}(z)\right|^{2}}{\left(1+|f(z)|^{2}\right)^{2}} d \theta=-2 \pi r \frac{d S(r)}{d r}
$$

Since $\theta_{0}(r)$ meets $C$ and the boundary of $\Delta_{0}$, we see $L(r) \geqq d>0$. Hence $d^{2} \log \frac{r_{0}}{r} \leqq 2 \pi S(r)$, so that $\lim _{r \rightarrow 0} S(r)=\infty$. Now $f(z)$ is regular in $\Delta_{0},|f(z)|<\rho$ in $\Delta_{0},|f(z)|=\rho$ on the boundary of $\Delta_{0}$, except at points of $E$ and $\lim _{r \rightarrow 0} S(r)=\infty$.

Hence by a theorem ${ }^{2}$ proved by the author, $f(z)$ takes any value in $|w|<\rho$, except values of capacity zero, infinitely many times in $\Delta_{0}$ a fortiori in $\Delta_{\delta}$. Let $e_{1}$ be the set of values in $D_{1}$, which are taken by $f(z)$ finite times in the neighbourhood of $z_{0}$. Then by the above result, at every point $w_{0}$ of $e_{1}$, there exists a neighbourhood $U\left(w_{0}\right)$, such that any value in $U\left(w_{0}\right)$, except values of capacity zero, is taken by $f(z)$ infinitely many times in $\Delta_{\delta}$. Since by Lindelöf's covering theorem, we can cover $e_{1}$ by an enumerably infinite such neighbourhoods and a sum of enumerably infinite number of sets of capacity zero is also of capacity zero, we see that any value in $D_{1}$, except values of capacity zero, is taken by $f(z)$ infinitely many times in $\Delta_{\delta}$.

[^3]We take $\delta_{1}>\delta_{2}>\cdots>\delta_{n} \rightarrow 0$ for $\delta$ and the corresponding exceptional set be $e^{(n)}$, then $e_{1}=\sum_{n=1}^{\infty} e^{(n)}$ is of capacity zero and any value in $D_{1}$, except $e_{1}$, is taken by $f(z)$ infinitely many times in the neighbourhood of $z_{0}$. Next we approximate $D$ by closed domains $D_{1} \subset D_{2} \subset \cdots \subset D_{n} \rightarrow D$ and the corresponding exceptional set be $e_{n}$ and $e=\sum_{n=1}^{\infty} e_{n}$. Then $e$ is of capacity zero and any value in $D$, except $e$, is taken by $f(z)$ infinitely many times in the neighbourhood of $z_{0}$, q.e.d.


[^0]:    1) F. Iversen: Sur quelques propriétes des fonctions monogènes au voisinage d'un point singulier. Öfv. af Finska Vet-Soc. Förh. 58 (1916).
    K. Kunugai: Sur un théorème de MM. Seidel-Beurling. Proc. 15 (1939),-Sur l'allure d'une fonction analytique uniforme au voisinage d'un point frontière de son domaine de définition. Jap. Jour. Math. 18 (1942).
    K. Noshiro: On the theory of cluster sets of the analytic functions. Jour. Fac. Sci. Hokkaido Imp. Univ. 6 (1938),-On the singularities of analytic functions. Jap. Jour. Math. 17 (1940).
    2) K. Kunugui, l.c.
[^1]:    1) Evans: Potentials and positively infinite singularities of harmonic functions. Monathefte f. Math. u. Phys. 43 (1936).
    2) Brelot: Problème de Dirichlet et majorantes harmoniques. Bull. Sci. Math. France (1939).
[^2]:    1) If $\Delta^{(n)}$ is a domain of the first kind, $f(z)$ takes every value of $|w|<\rho$ in $\Delta^{(n)}$.
[^3]:    1) K. Kunugui : Sur un problème de M. A. Beurling. Proc. 16 (1940).
    2) M. Tsuji : On the behaviour of a meromorphic function in the neighbourhood of a closed set of capacity zero. Proc. 18 (1942).
