PAPERS COMMUNICATED ## 52. On the Riemann Surface of an Inverse Function of a Meromorphic Function in the Neighbourhood of a Closed Set of Capacity Zero. By Masatsugu TSUJI. Mathematical Institute, Tokyo Imperial University. (Comm. by T. Yosie, M.I.A., June 12, 1943.) Let E be a closed set of capacity zero¹⁾ on the z-plane and C be a Jordan curve surrounding E and D be the domain bounded by E and C. Let w=w(z) be one-valued and meromorphic in D and on C and have an essential singularity at every point of E and F be the Riemann surface of the inverse function z=z(w) of w=w(z) spread over the w-plane. Concerning F, the following facts are known: (i) F covers any point on the w-plane infinitely many times, except a set of points of capacity zero²⁾. (ii) Let w_0 be a regular point of F. Then z(w) can be continued analytically on the half-lines: $w=w_0+re^{i\theta}$ $(0 \le r < \infty)$ indefinitely or till we meet the image of C, except a set of values of θ of measure zero³⁾. Let (w_0) be a boundary point of F, whose projection on the w-plane is w_0 . Iversen called (w_0) a direct transcendental singularity of z(w), if w_0 is lacunary for a connected piece F_0 of F, which lies above a disc K_0 about w_0 and has (w_0) as its boundary point. We will prove the following third property of F. Theorem. The set of points on the w-plane, which are the projections of direct transcendental singularities of z(w) is of capacity zero. We will first prove a lemma. Lemma. Let F_0 be a connected piece of a Riemann surface F spread over the w-plane, which lies above a disc K_0 bounded by a circle C_0 . Suppose that F_0 does not cover a closed set E_0 , which lies with its boundary inside C_0 . If there exists a non-constant f(w) on F_0 , which satisfies the following conditions: (i) f(w) is one-valued and meromorphic on F_0 , (ii) f(w) does not take the values on a closed set E of capacity zero, (iii) f(w) tends to E, when w tends to any accessible boundary point of F_0 , whose projection lies inside C_0 , then $C_0 = 0$. *Proof.* Let \mathfrak{F} be the simply connected universal covering Riemann surface of F_0 . We map \mathfrak{F} on |x| < 1 by $w = \varphi(x)$. Suppose that cap. $E_0 > 0$, then, as I have proved in my former paper⁴⁾, the accessible ¹⁾ In this note, "capacity" means "logarithmic capacity." ²⁾ R. Nevanlinna: Eindeutige analytische Funktionen. p. 132. Satz 2. S. Kametani: The exceptional values of functions with the set of capacity zero of essential singularities. Proc. 17 (1941). ³⁾ M. Tsuji: On the behaviour of a meromorphic function in the neighbourhood of a closed set of capacity zero. Proc. 18 (1942). ⁴⁾ M. Tsuji: On the domain of existence of an implicit function defined by an integral relation G(x,y)=0. Proc. 19 (1943). boundary points of F_0 , whose projections lie inside C_0 , correspond to a set e_0 of positive measure on |x|=1. Since cap. E=0, by Evans' theorem⁵, there exists a positive mass-distribution $d\mu(a)$ of total mass 1 on E, such that $$u(z) = \int_{E} \log \frac{1}{|z-a|} d\mu(a)$$ tends to $+\infty$, when z tends to any point of E. Let v(z) be the conjugate harmonic function of u(z) and put $H(z)=e^{-(u+iv)}$. Then H(z) is meromorphic outside E and tends to zero, when z tends to any point of E. We put $G(x)=H(f(\varphi(x)))$. Then G(x) is one-valued and meromorphic in |x|<1. If x tends to any point of e_0 non-tangentially to |x|=1, $f(\varphi(x))$ tends to E, so that G(x) tends to zero. Hence by Priwaloff's theorem, $G(x) \equiv 0$, or $f(w) \equiv \text{const.}$, which contradicts the hypothesis. Hence cap. $E_0=0$, q. e. d. By this lemma, we can prove the Theorem as follows. Let F_0 be a connected piece of F, which lies above a disc K_0 bounded by a circle C_0 . We suppose that F_0 does not contain the image of C. We see easily that, z(w) tends to E, when w tends to any accessible boundary point of F_0 , whose projection lies inside C_0 . Since z(w) does not take the values on E, we have by the Lemma, that the set of points inside C_0 , which are uncovered by F_0 is of capacity zero. This point established, we can proceed similarly as in my former paper⁶⁾ and prove the Theorem. ⁵⁾ Evans: Potentials and positively infinite singularities of harmonic functions. Monathefte f. Math. u. Phys. 43 (1936). ⁶⁾ M. Tsuji, l.c. 4).