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§1. Throughout the present paper we use the following notation :
(1) p(A)=the cardinal number of a set A.

Let G be a compact abelian group containing an infinite number
of elements, and let us put

(2) v(G)=the smallest cardinal number P(I") of a system B(0)=
{VA0)|rer} of open neighborhoods V,(0) of the zero element
0 of G which defines” the topology of G at 0,

(8) o(G)=the smallest cardinal number p(I") of a system O=
{0, |7erl'} of open subsets O, of G which defines? the topology
of G,

(4) ®G)=the smallest cardinal number ¥(D) of a subset D of G
which is everywhere dense in G.

The purpose of the present paper is to evaluate the cardinal
numbers p(G), ®(G), o(G@) and ¥G) in terms of the cardinal number
m=p(G*) of the discrete character group G* of G. The main results
may be stated as follows:

Theorem 1. YG)=2™.

Theorem 2. ©(G)=o(G)=nt

Theorem 8. d(G)=n, where n s the smallest cardinal number
which satisfies 2" = m.

Theorem 1 is a generalization of the fact that a compact abelian
group containing an infinite number of elements has always a cardinal
number = ¢, and that there is no compact abelian group whose cardinal
number is exactly ¥,. Further, assuming the generalized continuum
hypothesis : 28a=¥,,;, it follows from Theorem 1 that there is no
compact abelian group whose cardinal number is exactly ¥, if a is a
limit ordinal. Theorem 2 implies as a special case that a compact
abelian group G is separable® (and hence metrisable) if and only if
the discrete character group G* of G is countable, and if and only if

1) A system 2(a)={V,(a)|rel} of neighborhocds V,(a) of a point a of a topo-
logical space 2 defines the topology of 2 at a if, for any neighborhoed V(¢) of ¢ in
2, there exists a 7e " such that Vi (a) < V(a).

2) A system £.:{O,|7eI'} of open subisets O, of a topological space 2 defines
the topology of 2 if, for any ae 2 and for any neighborhood V(a) of a in 2, there
exists a TeI" such that «e Oy < V(a).

3) A topological space 2 is separable (=satisfies the second countability axiom of
HausdorfT) if there exists a countable family O={0.|7=1,2,...} of open subsets O,
of 2 which defines the topology of 2.
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G satisfies the first countability axiom of Hausdorff at the zero element
0 of G®. Finally, from Theorem 3 we see that there usually exists,
in a compact abelian group G, a dense subset D of G whose cardinal
number p(D) is smaller than the cardinal number P(G*) of the discrete
character group G* of G, which as we already know by Theorem 2
is equal to o(G). For example, in a compact abelian group G with

pG)=2¢ (i. e. with p(G*)=c because of Theorem 1), there always

exists a countable subset D of G (or even a countable subgroup H
of G) which is dense in G. This fact, however, is not surprising
since we already know® that there exists a monothetic or a solenoidal
compact abelian group which is not separable. Theorem 3 only shows
that this is quite a natural phenomenon. If we again assume the
generalized continuum hypothesis, then n=m if and only if m=¥X, with
a limit ordinal @, and n=¥, if m=¥,,.

Theorem 1,2 and 8 are all clear if m=X, Hence, throughout
the rest of this paper we always assume that m > ¥,

§2. Proof of Theorem 1. let G be a compact abelian group
containing an infinite number of elements, and let G* be the discrete
character group of G. Since every aeG can be considered as a real-
valued (mod. 1) function® ¥(a*)=(a,a*) defined on G*, and since for
any peir {a,b} S G with a 5=b there exists an a*eG* with (a,a%) +
(b,a”), so we see that p(G) < m=2m,

In order to show that p(G)=2", let us observe how a character
X(a*) on G* can be defined constructively by transfinite induction :
Let

(5) G ={a; |0 a<ow(m)},

be a well-ordering of all elements of G* such that ag =0* (=the zero
element of G*), where w(m) is the smallest ordinal number which
corresponds to the cardinal number m. Let us divide G* into three
classes Ay, A5 and A3 : the first class A consists of af=0* and of
all a; which is contained in a subgroup H of G* generated by
{a5|10<pB<a}; the second class A7 consists of all a* such that
a; €H; and ma; e H; for some integer m>1; and finally the third
class A5 consists of all a; such that ma; € H} for m=1,2,.... It is
then easy to see that A7 and A7 together generate G*, and so
P47 w AF)=m, since by assumption m> N, Let us now define a
character X(a*) on G* constructively by transfinite induction : for each
a; € Af, the value X(a;) is uniquely determined by the values {X(a})|
B <a}; for each a; € A7, let m, be the smallest positive integer such
that m.a; e H; Then there are exactly m, different possibilities to
define X(a;), namely,

4) S. Kakutani, Uber die Metrisation der topologischert Gruppen, Proc. 12 (1936),
82-84.

6) H. Anzai and 8. Kakutani, Bohr compactifications of a locally compact abelian
group, to appear in Proc. 19 (1943).

6) (a,a*) denotes the value of a character a* e G* at a point a€G, and also the
value of a character ae G at a point a*eG*.
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©)  ta)=—-Shmel,+-L  (mod.1), j=0,1 ., m.—1
if a (3
7 m,,a,f=2’,§ﬂ1n,,a;pe HF, 0<P << <Pu<a.

Finally, for each a, ¢ A5, the value X(a;) can be chosen arbitrarily

(mod.1). From these facts follows immediately that p(G) > 2v4s -4
=2" as we wanted to prove. This completes the proof of Theorem 1.

83. Proof of Theorem 2. Let G* be the discrete character group
of a compact abelian group G. It is easy to see that a defining
neighborhood system B(0)={V,(0)}7ef} of the zero element 0 of
G is given by

)] Vr(0)={al l(a,a})| < 1 p=1 k}
m

9 r= {r={ai‘, v s myl{af, .., a5} S G5 k,m=1,2, } .

From this follows easily that o(G) < () =pG*)=m.

In order to show that ®(G)=m, let BO)={V,(0)|rel'} be a
family of neighborhoods V,(0) of the zero element 0 of G which defines
the topology of G at 0 and such that Y(/")=b(G). For each relr,
let H, be a closed subgroup of G contained in V(0) sueh that the
factor group F,=G/H, is a compact separable abelian gwroup. It is
then clear that the discrete character group F;" of F, is countable.
Let us consider F) as the family of all continuous characters on G
which vanish identically on H,. F;" is then a subgroup of G*, and
we claim that

(10) G*=\,erk; .

In order to prove (10), let a; be an arbitrary element of G* and
let us put
(11) vio={al i@ ai)| < }
Then Vy(0) is an open neighborhood of the zero element 0 of G. Let
now 7 el be such that V,(0) < Vi(0), and let H, be a closed subgroup
of G contained in V,(0) as defined above. Then aeH, implies naeH,,
hence | (na, ag)| < 1/4 (mod. 1) for n=1,2, ... and consequently (a, a;)
=(. Thus the character %(a)=(a, as) vanishes identically on H,, and
so we must have a; e F. Since ay is an arbitrary element of G,
this proves (10). From (10) follows immediately that m=p(G™) =< (I )
=p(G).
We shall next show that o(G)=0(G). It is clear that o(G) = v(G).
In order to prove that o(G) < v(G), let BO)={V,(0)|rel'} be a
family of open neighborhoods V,(0) of the zero element 0 of G which
defines the topology of G at 0. For each rel, take a covering

GZ< VUih0,.; of G by a finite number of translations O, ;=a, ;+ V,(0)
of V,(0). Then we claim that O={0,;|i=1,...,n; rel'} is a
family of open subsets of G which defines the topology of G.
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In fact, for any aeG and for any open set O(a) containing a, let Be "
be such that a+ Vg(0) < O(a). Then take a 7rel” such that V,(0)—
V(0) S Vg(0) and also a translation O, ;=a, ;+ V,(0) of V,(0) which
contains a. Then we see aea,;+V(0)=a+V,(0)—(a—a,;) < a+
VA0)—V,(0) < ap+ V4(0) < O(@). Thus O={0,;|i=1,...,n,; rel}
defines the topology of G. From this follows immediately that o(G)
S p©)=p(I")=m. This completes the proof of Theorem 2.

§4. Proof of Theorem 3. Let G be a compact abelian group with
p(G)=2", or what amounts to the same thing by Theorem 1, with
p(G*)=m, where we denote as usual by G* the discrete character group
of G.

Let D be a subset of G which is dense in G with p(D)=n. We
shall show that m < 2". In order to show this, let H be a subgroup
of G which is generated by D. Since D is obviously an infinite set,
so we see p(D)=p(H)=n. Let us now consider H as a discrete group,
and let H* be the compact character group of H. Then every con-
tinuous character X(a)=(a,a*) on G may be considered as an algebraic
character on H, and so there exists an algebraic homomorphism a* =
¢*(@®) of G* onto an algebraic subgroup G* of H*®. This homo-
morphism is even an isomorphism since H is dense in G. Thus G*
is algebraically isomorphic with an algebraic subgroup G*' of H* and
hence m=p(G*)=p(G") EpH*)=2" by Theorem 1. This completes
the first half of the proof of Theorem 3%.

Let now n be a cardinal number satisfying m <2". We shall
show that there exists a subset D of G with p(D) < n which is dense
in G. For this purpose it suffices to prove the following

Theorem 4. Let G* be a discrete abelian group with p(G*)=m,
and let n be a cardinal number which satisfies m <2". Then there
exists a family D={1(a*)} of algebraic characters on G* with P(D)<n
whick separates every element a*eG* with a*=+0% from 0* (i.e.
such thut, joir any a"eG™ with a* & 0%, there erists a character X e D
with 1(a*) +0).

In fact, if there exists such a family D, then D may be considered
as a subset of the compact character group G=G** of G*. The
algebraic subgroup H of G which is generated by D is dense in G;
for, otherwise, there would exist an element a¢* e G* such that (@, a”)
=0 for any aeH, or equivalently 7(a*)=0 for any Xe D, in contradic-
tion with the separating property of D={X(a*)} stated above.

So it only remains to prove Theorem 4.

Proof of Theorem 4. We shall divide our arguments into three
cases :

7) H. Anzai and S. Kakutani, loc. cit. 5).
8) We may obtain the same inequality m <2t directly by appealing to the fact
that if a Hausdorff space 2 contains a dense subset D with p(D)=n, the cardinal

number p(2) of the space 2 must satisfy p(2) <22 (Cf. B. Pospisil, Annals of Math.
38 (1937)). But in order to obtain m <2 from 2m< 2®" we need the generalized
continuum hypothesis.
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1st case: G* has mo element of finite order. We shall first notice
that there exists a subset B*={b; |rel'} of G* with p(B*)=p([")=
m=p(G*) consisting of mutually independent elements and such that
every a*eG* with a* == 0" satisfies a relation of the form:

(12) ma* =S5anb,

where {ry, ...,7:} S I" and {m,my, ..., %} is a finite system of positive
or negative integers.

In faet, it suffices to take as B* any maximal subset of G* con-
sisting of mutually independent elements, whose existence is clear from
Zorn’s lemma. It is then clear that every a*eG* with a* =+ 0*
satisfies a relation of the form (12). Further, since G* has no element
of finite order, for any given finite systems {r,...,7:} < I" and
{m,ny, ..., m:}, there exists at most one element a* e G* which satisfies
(12). From this follows immediately that p(G*)=p(B*) if we remember
that m > ¥, by assumption.

Let H* be an algebraic subgroup of G* generated by B*. Then
for any system {c,|rel'} of real numbers (mod. 1), there exists a
uniquely determined algebraic character X(a™) defined on H* which
satisfies X(by)=c, (mod. 1) for any rerl.

Let now D={4,|0s€>]} be a family of diadic partitions 4, of I':
r=r,ur.,, Ir,~nI;=6, with 9(37) <n satisfying the following con-
dition? : for any finite system {ry, .-.,7x} S " with 7;3=71;, for 17,
there exists a ose€>) such that riel, and {ry...,7:} < I,). The
existence of such a family D is an easy consequence of the fact that
p(M)=m and m < 2". In fact, it is easy to see that there exists a
family Dy={4|ceT} of diadic partitions 42 of I': I'=r*ury,
PAIrY=6 with p(T) < n satisfying the condition that for any pair
{rr} S I with r;==7s there exists a reT such that r,el? and
7€ I'Y. It is then clear that the family ®={4,|se3]} of all diadic
partitions 4, of I': I'=I, I, where [,=I° -~ e, I;=rfv--
oI, S={o={r, - wu} | {m s} S T; n=1,2,...} is a required
one.

Now, for any oce>], let us define a character ,(a*) on H™ by
giving the values {X,(b7)|rel'} as follows: X,/(bf)=4 if rel, anl
1,(b7)=0 if yeI,, where A is a fixed irrational number independent
of ¢ and 7. This character Z,(a*) can then be extended to a character
1(a*) on G*. The extension is not unique unless H*=G*; so take
any of the possible extensions. We claim that D={X(a*)|se>]} is
a required family, i.e. that for any a*eG™ with a* == 0*, there exists
a se>) such that %(a*)=0. In fact, every a*eG* with a*==0*
satisfies a relation of the form (12). ILet se>] be such that r,erl,
and {ry ...,7u} S 5. Then X (ma*)=7(ma*) =25 1nb;,)=mr, £ 0

(mod.1), and so Z,(a*)==0 (mod.1). This completes the proof of
Theorem 4 in case G* has no element of finite order.

9) In case k=1, this condition only means that r1erI,.
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2nd case: every element of G* is of finite order. Let Gn be a
subgroup of G* consisting of all elements a*eG* which satisfy na*
=0* We have clearly G*=\/2-1G&, and p(Gy) < 2", n=1,2,.... By
a result of G. Kothe'”, each G, is algebraically isomorphic with a
restricted infinite direct sum of a family {C,|rel,} of finite cyclic
groups C, whise degree d, divides n:

(13) Ga =2‘rcl‘,. ®C,.

Consider each C, as a subgroup of Gy, and let b; be a generating
element of C,. Then, (13) means that every element a*eGp with
a® = 0* may be expressed in the form:

(14) a'* =2:-l npb;; ’

where {r1, .-.,7:} =TI and {n,...,m} is a finite system of positive
integers such that 0<n,,<d,p for p=1,...,k. It is clear that
M) <m. Since the compact character group (Gx)* of Gi is topo-
logically isomorphic with the unrestricted infinite direct sum of the
same family {C,|rel,} of cyclic groups:

(15) G)* =Eral’,.e C,

so we see that for any system {c,|rerl.} of real numbers c,=n;/d,

where n; is an integer satisfying 0 <n; <d,, there exists a uniquely

determined character X(a*) on Ga such that X(b;)=c,=n;/d, for any
rerl,, and so

*

(16) a')=Sh

T

?
if a* is of the form (14).

Let us again take a family ®={4,|se>},} of diadic partitions 4,
of Iy: Iy=I,orl), I~T)=86, with p(3.)=n satisfying the same
conditions as in above. Then, for each o€>),, let us define a character
2,(a*) on G by giving the values {X,(b7)|rel,} as follows: X(b;)=
1/d, if rel, and 2,(b;)=0 if rel,. It is then easy to see that the
family D,={2.(a*)|se >4} of characters thus obtained has a required
separating property for G.. In fact, every a* e G, with a* == 0" may
be expressed in the form (14), and if we take a ose>, such that
nel, and {rs,...,7} STy, then it is clear that X(a*)=nyd,, =0
(mod. 1).

Thus, for each n, we have obtained a family D,.={x(a*)|se>3,}
of characters on G. having a requireo separating property for Ga.
Extend each Z,(a*)eD, to a character Z,(a*) on G*. This extension
is not unique unless G*=G,; so take any of the possible extensions.
If we denote by D, the family {X,(a*)|se3}} of characters thus
obtained by extension, then it is elear that D=\/%., D, is a required
family for G*. Thus Theorem 4 is proved in case every element of
G* is of finite order.

10) G. Kothe, Mathematische Annalen, 105 (1931), 15-39.
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3rd case: case of a gemeral discrete abelian group G*. Let Gy
be a subgroup of G* consisting of all elements of G* of finite order.
Then the factor group F*=G*/G¢ has no element of finite order. It
is clear that PGe)=p(G*)<2" and p(F*)=pG*/Gs) < pG*) = 2"
Hence, by the results obtained in the first and the second cases, there
exist a family D, of characters on G* with p(Dy) < n which separates
every a*eGq with a*=+0* from 0%, and a family D’ of characters
on F*=G*/G; which separates every element a* ¢ F'* with a*’ = 0™
from 0*, where 0* is the zero element of F'*. Extend each character

X(a")e D, to a character X(a*) on G* in any possible way, and let
D, be the family of all characters thus extended. Further, consider

every character ¥(a*)e D on F*=G*|G; as a character ¥'(a*) on G*
which vanishes identically on G7, and let I’ be the family of characters
on G* thus obtained. It is then easy to see that D=D,u IV is a
family of characters on G* with a required separating property for G*.

This completes the proof of Theorem 4 in a general case.

Incidentally, we have proved the following

Theorem 5. Let G* be a discrete abelian group with HG*)=m,
and let n be a cardinal number which satisfies m < 2" Then there
exists a compact abelian group H* with p(H*) < 2" which contains an
algebraic subgroup algebraically isomorphic with G*

§5. Problems. It would be an interesting problem to investigate
how far we can obtain analogous results for non-commutative compact
groups. And how is the situation for locally compact groups? We
may also ask the same questions for homogeneous topological spaces,
where we mean under a homogeneous topological space a topological
space 2 such that, for any pair of points {a,b} < 2 there exists a
homeomorphism of £ onto itself which maps a onto b.



