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§1. Let G be a locally compact (not necessarily separable) abelian
group, and let LXG) be the generalized Hilbert space of all complex-
valued functions x(g) which are defined, measurable and square in-
tegrable on G with respect to a Haar measure of G (with a certain
fixed normalization) having

) 1at=(]_lat0) dg)*

as its norm. Let further B(G) be the ring of all bounded linear trans-
formations B which map LXG) into itself. Then B(G) is a (non-com-
mutative) normed ring® with respect to the norm

(2) 1Bl =sup;z <1l B@)I.

For each a €@, let us denote by U, a unitary transformation of
LAG) onto itself which is defined by

(3) Ux)=2., 2g9)=n(g—a).

Then W(G)={U.|aeG} is a group of unitary transformations which
is algebraically isomorphic with G. Let further ¥(G) be an algebraic
subring of B(G) which is generated by U(G), i. e. a subring of B(G)
consisting of all 4eB(G) of the form:

4) A =2:-1%Ua,, ’

where {a,, --., 0.} < G and {ay, -.., &z} is an arbitrary finite system of
complex numbers. Let further' R(G) be the closure of A(G) in B(G),
i.e. a subring of B(G) consisting of all BeB(G) such that for any
€ >0 there exists an A e A(G) satisfying | B—Alll <e.

The purpose of this paper is to determine a general form of
maximal ideals of R(G). It will be shown that there exists a one-to-
one correspondence between the family IM(G) of all maximal ideals M
of R(G) and the family %(G) of all algebraic (=not necessarily con-
tinuous) characters® X(a) defined on G. This correspondence is even

1) L Gelfand, Normierte Ringe, Recueil Math., 9 (1941), 3-25.

2) Under a character of a locally compact abelian group G, we understand a
continuous representation of G by the additive group of real numbers mod.1. Some-
times it is also necessary to consider representations of G which are not necessarily
continuous. In order to distinguish these cases, we usually say continuous characters
and algebraic characters of G.
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a homeomorphism if we take the usual weak topology of MM(G) with
respect to which TUG) is a compact Hausdorff space, and if we con-
sider ¥(@) as the compact character group G‘“* of a discrete abelian
group G which is algebraically isomorphic with G. It will also be
shown that R(G) is isometrically isomorphic with the normed ring

C(‘JR(G))=C(£(G)) of all complex-valued continuous functions defined

on M(F)=%(G). From these two facts follows immediately that the
normed ring R(G) is uniquely determined up to an isometric iso-
morphism by the algebraic structure of a locally compact abelian
group G, and so is independent of the topology or the Haar measure
of G which we needed in defining LXG). Thus it turns out that in
order to investigate the normed ring R(G) of a locally compact abelian
group G, it suffices to discuss the case when G is a diserete abelian
group.

§2. Let M be an arbitrary maximal ideal of R(G). Then there
exists a continuous natural homomorphism B— ¢u(B) of R(G) onto
the ring of complex numbers such that |¢n(B)|<IIBIll for any
BeR(G) and M={B|pyu(B)=0}. It is then clear that a— U,— px(U,)
is an algebraic representation of G by complex numbers. Further,

since | oa(U)| 1 Uall =1 and | (91l U) 1=|0alU-0)| S Il Uoall =1,
so we see that |¢y(U,)|=1 for all aeG. Thus pu(U,)=exp (Zmlx,,(a))

defines an algebraic character Xy(a) on G (whose value is a real number
mod. 1), of which we do not know whether it is continuous or not.
In the following lines we shall show that Xy(a) is not necessarily
continuous unless G is discrete, and that every algebraic character ¥(a)
of G may be obtained in this way, i.e. that for any algebraic character
Z(a) defined on G there oxists a maximal ideal M of the normed ring
R(G) such that X(a)=Xu(a) for all aeG.

§3. Let G* be the character group of G in the sense of L.
Pontrjagin” and E.R. van Kampen® G* is also a locally compact
abelian group. Hence we may consider the generalized Hilbert space
LHG*) and the ring B(G*) of all bounded linear transformations B*
of LAG™) into itself. The norm of an element z* e L*(G*) is denoted
by llz*l, and the norm of a transformation B*eB(G*) is denoted by
l{B*(ll. It is known that if we take a suitable normalization of a
Haar measure on G*, then an analogue of Plancherel’s theorem is
true® ¥ : for any x(g) e LXG), the integral®

5 x*(g*)=Lx(y) exp (2i(g, g%))dyg ,

1) L. Pontrjagin, Topological Groups, Princeton, 1939.

2) E.R. van Kampen, Locally bicompact abelian groups and their character groups,
Annals of Math., 36 (1935), 448-463.

3) A. Weil, Intégrations dans les groupes et leurs applications, Actualités, Paris,
1940.

4) M. Krein, Sur une généralisation du théoréme de Plancherel au cas des intégrales
de Fourier sur les groupes topologiques commutatifs, C. R. URSS, 30 (1940), 484-488.

5) (g, g*) denotes the value of a character g* € G* at a point ge G, and also the
value of a character ge G at a point g* e G*
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which exists in the sense of the limit in mean, defines an element z*
=P(x)e L{G"); conversely, for any x*(g*)e LXG"), the integral

(6) w(g)=ja*x*(y*) exp (—2ri(g, g*))dg" ,

which again exists in the sense of the limit in mean, defines an element
z=Q(xz*)e LXG); both P and @ are isometric linear transformations
and are inverse to each other: [ P(x)|=lzl, | @x*)|=[2*] and PQ=
QP=1I (=identity).

For any Be®B(G), let us consider an element B* e B(G*) defined
by B*=PBQ. 1t is clear that B is obtained from B* by the inverse
relation: B=QB*P, and that the correspondence B<«>B* gives an
isometric isomorphism of B(G) onto B(G*). Let us now consider a sub-
ring R*(G™) of B(G*) which corresponds to R(G) by this isomorphism.
First it is easy to see that if A=U, then the corresponding A*
is a bounded linear transformation of LXG*) which maps z*(¢*) to

exp (Zm'(a, g“))x*(g’). Further, if A is of the form (4), then the
corresponding A* is a bounded linear transformation of LXG*) which
maps 2*(g*) to (2',‘,_101,, exp (27ri(a,,, g*)))x’(g"). From this follows
easily that

(7) IH 2’;-1%(]% ||| =Supa*e6*| Egmlap eXD (27”:(‘1121 g*)) ! .

Thus the norm of a transformation A=E’;,_1a,,U.,p coincides with the
norm [ f4l of a complex-valued continuous function

) f3(g*)=%-1a exp (27ila, 97)) ,
where we put as usual
) If* l=sup gxeex | f*(g%)].

Let now BAP(G*) be the family of all complex-valued Bohr almost
periodic? functions f*(¢g*) defined on G*. BAP(G*) is a normed ring
with (9) as its norm, and the fact observed above shows that A(G)
is isometrically isomorphic with a subring FLC(G*) of BAP(G*) con-

sisting of all finite linear combinations >3%.;a,exp (Zm'(a,,, g"')) of
exponential continuous characters exp (Zni(a,,, g*)) defined on G*. Since

for any f*(¢*)e BAP(G*) and for any e>0, there exists an
fi(g*)e FLC(G™) such that |f*—fil<e, so we see that the subring
R*(G*) of B(G*) which corresponds to R(G) by the isomorphism
stated above consists exactly of all bounded linear transformations of

1) A complex-valued function f*(g*) defined on a locally compact abelian group
G* is a Bohr almost periodic function, if f*(g) is uniformly continuous on G* and
if the family {f*.*(¢g*)|a*eG*} of all translations f *4x(g*)=/*(g* +a*) of f*(g*)
is totally bounded with respect to the metric defined by the norm (9). Cf. J. von
Neumann, On almost periodic functions in groups, Trans. Amer. Math. Soc. 36 (1934),
446-492.
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LAG*) which maps z*(¢*) to f*(g*)x*(g*), where f*(¢*) is a complex-
valued Bohr almost periodic function defined on G*. Thus

Theorem 1. The normed ring R(G) of a locally compact abelian
group G 1is isometrically isomorphic with the mormed ring BAP(G*)
of dll complex-valued Bohr almost periodic functions f*(g*) defined on
the character group G* of G.

§8. As is well knownV, for any locally compact abelian group
G*, there exists a compact abelian group G* and a continuous iso-
morphism ¢g*'=¢*(g*) of G* onto a subgroup G* of G* which is
dense in G* with the following property: for any complex-valued
Bohr almost periodic function f*(g*) defined on G*, there exists a
complex-valued continuous function f*(g*) defined on G* such that

F*(¢*@")=f*(g") for all g*eG*. This group G* is called the
universal Bohr compactification of G*. Since conversely every

complex-valued continuous (and hence Bohr almost periodic) function
J*(g*) defined on G* determines a complex-valued Bohr almost
periodic function f*(g*)=F"(¢"(g")) on G*, so we see that the normed
ring BAP(G") is isometrically isomorphic with the normed ring C(G*)
=BAP(G*) of all complex-valued continuous functions f*(g*) defined
on G*.

Cn the other hand, it is also knewn? that if G* is the character
group of a locally compact abelian group G, then the universal Bohr
compactification G* of G* is topologically isomorphic with the compact
character group G‘* of a discrete abelian group G“ which is alge-
braically isomorphic with G. In fact, G*’ is first obtained by introdue-
ing on G* a weaker uniform structure (G*, V;', I'), where

10)  V={(" k)| (G 0"V —(ap, %) | <&, p=1, ..., k}
an r=fr={a, . a;l{a - a} <G k=12, ..; >0},

with respect to which G™ is totally bounded, and then G* is obtained
by taking the completion of G*’. Since G“* is topologically isomorphic
with the group ¥(G) of all algebraic (=not necessarily continuous)
characters 1(a) defined- on G with the usual weak topology, so we see

Theorem 2. The normed ring R(G) of a locally compact abelian
group G s isometyically isomorphic with the normed ring C(¥(G))=
C(GP") of all complex-valued continuous functions defined on a com-
pact abelian group ¥(G)=GY*, where we mean by %(G) the group of
all algebraic (=mnot necessarily continuous) characters Xa) defined onm
G with the usual weak topology, i.e. a compact abelian group topo-
logically isomorphic with the character group G'P* of a discrete abelian
group G which is algebraically isomorphic with G.

1) T. Tannaka, Uber den Dualititssatz der nichtkommutativen topologischen
Gruppen, Tdhoku Math. Jonrn. 46 (1938), 1-12.

2) H. 2 .ai and S. Kakutani, Bohr compactifications of a locally compact abelian
group, to appew. in Proc. 19 (1943).
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§4. From Theorem 2 follows that there exists a one-to-one cor-
respondence between the family T(G) of all maximal ideals M of R(G)
and the family X(G) of all algebraic characters ¥(a) defined on G. We
shall now determine the precise way in which the correspondence is
given. As we have seen in §2, every maximal ideal M of R(G)
determines an algebraic character ¥y(a) on G by means of the relation :
em(U.)=exp (Zm'ZM(a)), where ¢,(B) is a continuous natural homo-

morphism of the ring R(G) onto the ring of complex numbers which
is determined by M. Conversely, let %(a) be an arbitrary algebraic
character on G. Then

12)  A=3E.qU., — elA)=3k.10, exp (2nikiay))

determines an algebraic representation of A(G) by complex numbers.
From the fact we have observed in the proof of Theorem 1, we see
that this representation may be considered as an algebraic representa-
tion f5 — ¢l(f2) of FLC(G*) by complex numbers given by

(13) fi(g")=35-10, exp (2nila, g7)) — oo F2)=F3 (1)
=>V%_apexp (Zmllo(a,,)) =% _ja,exp (Zni(a,,, Xo)) .
This shows that ¢i(f1) is obtained first by extending each function
fi(g*) on G* to a continuous function fi(X)=31%_ 4, exp (2m'x(a,,))

=31k a,exp (2m'(ap, Z)) on G*=%(G), and then by taking the value

of fi(%) at a particular point % e G*=%(G). Since G* is dense in G*
=%(G), so we see

(14) | o(f2) | = sUp yexo | FA(X) |=3Up gxea | F (g1,
or equivalently
(15) loA) | SN AN =IF5].

Thus it is possible to extend ¢(4) from A(G) to R(G) (i.e. to extend
ol f2) from FLC(G™) to BAP(G*)), and thus we obtain a continuous
representation B — @(B) of R(G) (i. e. a continuous representation.
X8l f)=F"(%) of BAP(G")=C(G")=C(%(G)) =C(G*) which is
obtained by taking the value of f*(¥) at x=xo). If we now put M=
{B|#(B)=0}, then it is clear that Xy(a)=x(a) for all aeG. Thus
Theorem 3. There exists a one-to-one correspondence between the
family MM(G) of all maximal ideals M of R(G) and the family ¥(G)

of all algebraic (=mnot mecessarily continuous) characters Xy(a) on G
given by the following relation :

(16) eu(Us)=exp (2ritu(a)) ,
where B — ¢yu(B) is a continuous natural homomorphism of R(G) onto
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the ring of complex numbers determined by M. More precisely, for
any maximal ideal M of R(G), the relation (16) determines an algebraic
character Zyla) on G, and conversely, for any algebraic character
X(a) on G, the algebraic representation A —> pi(A) of A(G) by complex
numbers which is given by (12) can be uniquely extended to a continuous
representation B— ¢((B) of R(G) by complex numbers such that the
maximal ideal M={B|p(B)=0} determined by @,(B) gives an algebraic
character Xyu(a) which satisfies Zy(a)=xSa) for all acG.



