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85. On the Strong Summability of Fourier Series.

By Gen-ichir6 SUNOUCHL
(Comm. by M. FUJIWARA, M.LA,, Oct. 12, 1943.)

Let f(x) be a real function of period 2r, integrable L over (0, 2r),
and let

f(x)-;— ao+§;}1(a, cos v+ b, sin vx) .

By s.(x) and o.(x) we denote the n-partial sum and the n-th arithmetic
mean of the above series, respectively.

Zygmund® has proved the following theorem.

If f is in LP, where p> 1, then

[ (100 o) o< a7\ floda,

where A, depends on p.

In 81, the author proves that the expanent 2 in the left hand
side series may be replaced by arbitrary index m =>2. In §2, we give
a theorem on the strong summability of double Fourier series. The
case of index m=2 has been given by Marcinkiewicz.? Finally in
§3, the strong summability theorem of lacunary sequence of partial
sums is proved. The case of index m=2 has been investigated by
Zalewasser® and Zygmund.?

I. We begin with some preliminary lemmas.”

Lemma 1. If {n.} denotes any sequence of positive integers satisfy-
ing the condition . /nx>>a>1, then

[NESITR P P

This is known.®

Lemma 2. Let fi,fs ... be a sequence of functions of period 2,
integrable L, and let s, , denotes the v-th partial sum of the Fourier
series of f.. Then

J Glses” :‘dxécm.»f(gm ) e,

where p>1 and m>1.
This lemma is due to Boas and Bochner” when k,=». But the
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above generalization is easily established by the ordinary method from
their lemma.
Theorem 1. When m =2, p>1,

[ (33 1 mon ) s < D of | .
In particular if f belongs to LP(p > 1), then the series
St—oul"n  (m22)
converges almost everywhere, so that
@+ 3 s —f" >0 (m=1)

almost everywhere.
If dash denotes differentiation with respect to z, then

lsn_”nl=l3‘:n I/(n+l) .

Applying Lemma 2, Jensen’s inequality and Lemma 1 successively,
we obtain for m =2

7 (331 mon ) o <[ (3 sk )
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Hence if flx) belongs to LP(p > 1), the series ills,.——o,. |™[n(m = 2)
converges almost everywhere and by Kronecker’s theorem (n+1)7!
iols,, —fi™— 0 (m =1) almost everywhere.

II. Let f(x,y) be a function of period 2, integrable L. By
Sma(f; %, Y) and om,(f; %,¥), we denote the n-th partial sum and the
n-th arithmetic mean of Fourier series of f(x,y). Then we have
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Lemma 3. If m>1, p>1, we have

FElmwa l”')#dx s (310 i'“)’ﬁdx :
For,

| o, (o 2) I < (et 1) 35| 8,(Fy 2) I

and Lemma 2 give us the lemma.
Theorem 2. If f(x,y)e LP(p>1), then

[ (53t ) ity < Koo [

for m=2. Especially
@+D 2|8, —f "0 (m21)
almost everywhere.
For every function h(x,y), we describe it by A®(x,y) when we

consider h(xz,y) as a function of z only, and by A®(x, y) when we
consider as a function of y only. Then

'3'4. n " On,n |=3n{3n(f(2)) *Un(f(z))}(l)+ Un{sn(f(n) —"'n(fa))}(z):Pn'l‘ Qn ’
say. From Lemma 2.
b 4] b4
& m " (S nl £ . (@) [m "
[ EIPalrin) "t < Lo (B0 — 0uf® [7fn) "dr.
Integrating with respect to ¥ and applying Theorem 1, we obtain
2 (21 / 0 = 2% (2n
m D
(B Palrin) " dody < Mo, [ 1 oy
Applying Lemma 3, we get by the analogous calculation
"(*(s i) dedy < P rdod
([ (Slmn—omlmin) " dudy < Pu | [y
Thus we get the first part of the theorem. The remaining part is
obvious.
III. Theorem 3. If {p.} s an increasing sequence of natural
numbers, which satisfies
nk-l
> ljnpe =0(1/p7,)

-1
for some {m} such as B> mng_, > a> 1, then for f(z) e L*(p > 1),

Jo Gronmon, ”)%d“’ < Qu.f] If s
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where m = 2. In particular

@+ 3, —fI">0 21
almost everywhere.

The above condition is satisfied by p,=[n'], 1= 1.
For,

| Sp, %, |m/'n | St4 [™/n(pn+1)"

From Lemmsa 2 and 1, we have

r(ZIsp I"‘lnp,.) da= r<k-1,.-n,, 1I %, I"‘/np,.) d

<Ru.| (5%, l"'"E 1/npn) dx

S A
< T | P

Thus we obtain the theorem.



